博碩士論文 111329009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:18.220.194.29
姓名 黃威霖(Wei-Lin Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 銦含量對Al-5Zn-0.1Sn合金微結構和電化學性質之影響
(Effect of indium content on the microstructures and electrochemical properties of Al-5Zn-0.1Sn alloys)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究主要透過合金改質的方式,藉由微結構與電化學性質分析,探討不同銦含量(0.1、0.2、0.3wt%)對Al-5Zn-0.1Sn陽極合金電化學之影響。結果顯示,隨著In含量增加,在晶界處的鏈狀In-Sn相(活化點)隨之提升,使其抑制晶粒成長,造成晶界總表面積增加。在腐蝕過程中,能呈現更均勻的腐蝕並提升合金活性。結合極化曲線(LSV)、交流阻抗(EIS)及析氫腐蝕試驗(HER),從中觀察鋁陽極合金的活化機制。
再將改質鋁合金應用於空氣電池陽極進行放電檢測,相較於未添加In(Al-5Zn-0.1Sn)合金,Al-5Zn-0.1Sn-0.1In 陽極效率提升8%,Al-5Zn-0.1Sn-0.3In能量密度提升35%。綜上所述,Al-5Zn-0.1Sn-0.1In擁有最高的陽極效能,但其活性低於Al-5Zn-0.1Sn-0.3In,綜合評估下,Al-5Zn-0.1Sn-0.3In擁有最佳的能量密度。
摘要(英) This study primarily explores the electrochemical effects of different indium contents (0.1, 0.2, 0.3 wt%) on Al-5Zn-0.1Sn anode alloy through alloy modification, microstructure, and electrochemical property analysis. The results indicate that with the increase in In content, the chain-like In-Sn phase (activation points) at the grain boundaries increases, inhibiting grain growth and resulting in an increase in the total surface area of the grain boundaries. During the corrosion process, this leads to a more uniform corrosion and enhances the alloy′s activity. By combining polarization curves (LSV), electrochemical impedance spectroscopy (EIS), and hydrogen evolution corrosion tests (HER), the activation mechanism of the aluminum anode alloy was observed.

Furthermore, when the modified aluminum alloy is applied to the anode of an air battery for discharge testing, the Al-5Zn-0.1Sn-0.1In anode shows an 8% improvement in performance compared to the alloy without added indium(Al-5Zn-0.1Sn), and the Al-5Zn-0.1Sn-0.3In shows a 35% increase in energy density. In summary, the Al-5Zn-0.1Sn-0.1In alloy has the highest anode performance, but its activity is lower than that of Al-5Zn-0.1Sn-0.3In. Considering overall evaluations, the Al-5Zn-0.1Sn-0.3In alloy possesses the best energy density.
關鍵字(中) ★ 鋁陽極
★ 空氣電池
★ 銦元素
★ 電化學性質
關鍵字(英) ★ aluminum anode
★ air battery
★ indium element
★ electrochemical properties
論文目次 摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vii
表目錄 viii
第一章 前言與文獻回顧 1
1.1 前言 1
1.2 金屬空氣電池簡介 2
1.3 鋁陽極 4
1.3.1 鋁空氣電池工作原理 5
1.3.2 鋁空氣電池的優點及限制 6
1.3.3 微量元素對鋁陽極的影響 7
1.4 研究動機 8
1.5 電化學分析原理 8
1.5.1 極化曲線之原理 8
1.5.2 交流阻抗之原理 9
1.6 陽極活化理論-溶解再沉積原理 12
第二章 實驗步驟 12
2.1 合金製備 14
2.2 微結構分析與觀察 15
2.2.1 光學顯微鏡(Optical Microscopy, OM) 15
2.2.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 15
2.2.3 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 15
2.3 電化學分析 16
2.3.1 極化曲線 17
2.3.2 開路電壓 17
2.3.3 交流阻抗 17
2.4 析氫腐蝕試驗 18
2.5 全電池放電測試 18
第三章 結果與討論 19
3.1 微結構分析 19
3.1.1 OM微結構分析 19
3.1.2 SEM微結構分析 21
3.2 開路電壓 24
3.3 極化試驗 26
3.4 析氫腐蝕試驗 29
3.5 交流阻抗 30
3.6 I-V曲線 32
3.7 放電性能 34
3.8 放電後之腐蝕形貌 35
3.9溶解-再沉積原理 41
第四章 結論 44
第五章 參考文獻 45
參考文獻 [BUC] R. Buckingham, T. Asset, P. Atanassov, “Aluminum-Air Batteries: A Review of Alloys, Electrolytes and Design”, Journal of Power Sources, Vol. 498, 229762. (2021)

[DEN] M. Deng, D. Hoche, S. V. Lamaka, “Mg-Ca Binary Alloys as Anodes for Primary Mg-Air Batteries”, Journal of Power Sources, Vol. 396, pp. 109-118. (2018)

[DEY] M. A. Deyab, “Effect of Nonionic Surfactant as an Electrolyte Additive on the Performance of Aluminum-Air Battery”, Journal of Power Sources, Vol. 412, pp. 520-526. (2019)

[DOC] M. L. Doche, J. J. Rameau, R. Durand, F. Novel-Cattin, “Electrochemical Behavior of Aluminum in Concentrated NaOH Solutions”, Corrosion Science, Vol. 41, pp. 805-826. (1999)

[EGA] D. R. Egan, C. Ponce de León, R. J. K. Wood, R. L. Jones, K. R. Stokes, F. C. Walsh, “Developments in Electrode Materials and Electrolytes for Aluminum-Air Batteries”, Journal of Power Sources, Vol. 236, pp. 293-310. (2013)

[FAN] L. Fan, H. Lu, “The Effect of Grain Size on Aluminum Anodes for Al-Air Batteries in Alkaline Electrolytes”, Journal of Power Sources, Vol. 284, pp. 405-415. (2015)

[FER] D. Ferdian, Y. Pratesa, I. Togina, I. Adelia, “Development of Al-Zn-Cu Alloy for Low Voltage Aluminum Sacrificial Anode”, Procedia Engineering, Vol. 184, pp. 418-422. (2017)

[GAO] J. Gao, H. Fan, E. Wang, Y. Song, G. Sun, “Exploring the Effect of Magnesium Content on the Electrochemical Performance of Aluminum Anodes in Alkaline Batteries”, Electrochimica Acta, Vol. 353, 136497. (2020)

[GOE] P. Goel, D. Dobhal, R. C. Sharma, “Aluminum-Air Batteries: A Viability Review”, Journal of Energy Storage, Vol. 28, 101287. (2020)

[HAN] Y. Han, J. Ren, C. Fu, M. Jiang, S. Lu, J. Zhang, B. Sun, “Electrochemical Performance of Aluminum Anodes with Different Grain Sizes for Al-Air Batteries”, Journal of the Electrochemical Society, Vol. 167, 040514. (2020)

[LEE] S. M. Lee, Y. J. Kim, S. W. Eom, N. S. Choi, K. W. Kim, S. B. Cho, “Improvement in Self-Discharge of Zn Anode by Applying Surface Modification for Zn-Air Batteries with High Energy Density”, Journal of Power Sources, Vol. 227, pp. 177-184. (2013)

[LI] L. Li, H. Liu, Y. Yan, H. Zhu, H. Fang, X. Luo, Y. Dai, K. Yu, “Effects of Alloying Elements on the Electrochemical Behaviors of Al-Mg-Ga-In Based Anode Alloys”, International Journal of Hydrogen Energy, Vol. 44, pp. 12073-12084. (2019)

[LIN] C. Y. Lin, “Study on Discharge Characteristics of High Efficiency Aluminum Air Battery”, Master Thesis, National Taipei University of Technology. (2015)

[LIU1] Y. Liu, Q. Sun, W. Li, K. R. Adair, J. Li, X. Sun, “A Comprehensive Review on Recent Progress in Aluminum-Air Batteries”, Green Energy & Environment, Vol. 2, pp. 246-277. (2017)

[LIU2] Q. Liu, Z. Pan, E. Wang, L. An, G. Sun, “Aqueous Metal-Air Batteries: Fundamentals and Applications”, Energy Storage Materials, Vol. 27, pp. 478-505. (2020)

[LIU3] J. Liu, D. Wang, D. Zhang, L. Gao, T. Lin, “Synergistic Effects of Carboxymethyl Cellulose and ZnO as Alkaline Electrolyte Additives for Aluminum Anodes with a View Towards Al-Air Batteries”, Journal of Power Sources, Vol. 335, pp. 1-11. (2016)

[LIU4] X. Liu, P. Zhang, J. Xue, “The Role of Micro-Nanoscale AlSb Precipitates in Improving the Discharge Performance of Al-Sb Alloy Anodes for Al-Air Batteries”, Journal of Power Sources, Vol. 425, pp. 186-194. (2019)

[LIU5] Y. E. Liu, “The Material Preparation, Characterization and Cell Assembly for Zinc-Air Cell”, Master Thesis, National Chung Cheng University. (2009)

[MOK] M. Mokhtar, M. Z. M. Talib, E. H. Majlan, S. M. Tasirin, W. M. F. W. Ramli, W. R. W. Daud, J. Sahari, “Recent Developments in Materials for Aluminum-Air Batteries: a Review”, Journal of Industrial and Engineering Chemistry. Vol. 32, pp. 1-20. (2015)

[NES] M. Nestoridi, D. Pletcher, R. J. K. Wood, R. L. Jones, S. Wang, K. R. Stokes, I. Wilcockc, “The Study of Aluminum Anodes for High Power Density Al-Air Batteries with Brine Electrolytes”, Journal of Power Sources, Vol. 178, pp. 445-455. (2008)

[NIE] Y. Nie, J. Gao, E. Wang, L. Jiang, L. An, X. Wang, “An Effective Hybrid Organic/Inorganic Inhibitor for Alkaline Aluminum-Air Fuel Cells”, Electrochimica Acta, Vol. 248, pp. 478-485. (2017)

[PAR] I. J. Park, S. R. Choi, J. G. Kim, “Aluminum Anode for Aluminum-Air Battery-Part II: Influence of In Addition on the Electrochemical Characteristics of Al-Zn Alloy in Alkaline Solution”, Journal of Power Sources, Vol. 357, pp. 47-55. (2017)

[PEN] Y. Peng, J. Zhao, Y. Liu, R. Han, “Galvanic Corrosion Between Al–Zn–Mg–Cu Alloy and Stainless Steel in the Salt-Spray Atmosphere”, Materials Chemistry and Physics, Vol. 294, 127009. (2023)

[POV]E. Povoden-Karadeniz, “Thermodynamic Database of the La-Sr-Mn-Cr-O Oxide System and Applications to Solid Oxide Fuel Cells”, Swiss Federal Institute of Technology Zurich, Journal of Materials Research, Vol. 27, pp. 1915-1926. (2008)

[REN] J. Ren, J. Ma, J. Zhang, C. Fu, B. Sun, “Electrochemical Performance of Pure Al, Al-Sn, Al-Mg and Al-Mg-Sn Anodes for Al-Air Batteries”, Journal of Alloys and Compound, Vol. 808, 151708. (2019)

[REB] M. C. Reboul, B. Dubost, M. Lashermes, “The Stress Corrosion Susceptibility of Aluminum Alloy 7020 Welded Sheets”, Corrosion Science, Vol. 25, pp. 999-1018. (1985)

[TZE] Y. C. Tzeng, T. Y. Yung, C. C. Lin, C. Y. Lin, C. H. Du, J. S. Chen, P. T. Chen, Dissolution of Nanoprecipitate on Aluminum-Alloy Anode for High Discharging Performance in Al Battery Applications, Journal of Alloys and Compounds, Vol. 954, 170211. (2023)

[WU1] S. Wu, Q. Zhang, J. Ma, D. Sun, Y. Tang, H. Wang, “Interfacial Design of Al Electrode for Efficient Aluminum-Air Batteries: Issues and Advances”, Materials Today Energy, Vol. 18, 100499. (2020)

[WU2] Z. Wu, H. Zhang, J. Zou, X. Shen, K. Qin, C. Ban, J. Cui, H. Nagaumi, “Enhancement of the Discharge Performance of Al-0.5Mg-0.1Sn-0.05Ga Anode for Al-Air Battery by Directional Solidification Technique and Subsequent Rolling Process”, Journal of Alloys and Compounds. Vol. 827, 154272. (2020)

[WU3] Z. Wu, H. Zhang, D. Yang, J. Zou, K. Qin, C. Ban, J. Cui, H. Nagaumi, “Electrochemical Behavior and Discharge Characteristics of an Al-Zn-In-Sn Anode for Al-Air Batteries in an Alkaline Electrolyte”, Journal of Alloys and Compounds. Vol. 837, 155599. (2020)

[XU] X. Xu, J. Zhang, Y. Deng, “Discharge Performance of the Al–Mg–Sn Alloy Anodes with Different Sn Content for Al-Air Batteries”, Journal of Power Sources, Vol. 576, pp. 233-236. (2023)

[ZHA1] C. Zhang, Z. Cai, R. Wang, P. Yu, H. Liu, Z. Wang, “Enhancing the Electrochemical Performance of Al-Mg-Sn-Ga Alloy Anode for Al-Air Battery by Solution Treatment”, Journal of the Electrochemical Society, Vol. 168, 030519. (2021)

[ZHA2] P. Zhang, X. Liu, J. Xue, K. Jiang, “The Role of Microstructural Evolution in Improving Energy Conversion of Al-Based Anodes for Metal-Air Batteries”, Journal of Power Sources, Vol. 451, 227806. (2020)
指導教授 李勝隆(Sheng-Long LEE) 審核日期 2024-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明