博碩士論文 111329030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:13.58.248.250
姓名 劉聿翎(Yu-Ling Liu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鉬與熱處理對多孔Fe-8Ni-0.5C合金 微結構及機械性質之影響
(Effect of Mo and heat treatment on the microstructures and mechanical properties of Fe-8Ni-0.5C alloy foams)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以無壓式漿料多孔燒結成型技術,製備出孔徑1.8mm孔隙率50%之多孔Fe-8Ni-0.5C及Fe-8Ni-0.5C-0.8Mo合金;藉由添加鉬(0.8 wt%)與熱處理(回火、深冷)探討其對多孔合金微結構及機械性質的影響。結果顯示,針對多孔Fe-8Ni-0.5C合金之熱處理狀態,其壓縮平台應力隨著回火溫度下降而上升。
添加鉬並經深冷處理之多孔合金,不論在低溫回火還是高溫回火,其平台應力與能量吸收效率皆有著顯著的提升,相較於未經深冷處理狀態,其壓縮平台應力與能量吸收,不論在低溫還是高溫回火,其平台應力與能量吸收效率皆較有經深冷處理之狀態差。此外,含鉬之多孔合金,回火後微結構仍保有極高硬度之回火麻田散鐵,其抗壓平台應力(664 MPa)與單位能量吸收值(80 J/g),為本實驗最佳結果。且含鉬之多孔合金相比於未含鉬之多孔合金,在相同的熱處理狀態下,含鉬的合金表現出更佳的抗壓平台應力和單位能量吸收,進一步證明鉬元素的添加可有效提升壓縮性質。
摘要(英) This study used a pressureless slurry porous sintering technique to prepare porous Fe-8Ni-0.5C and Fe-8Ni-0.5C-0.8Mo alloys with a pore size of 1.8 mm and a porosity of 50 %. The effects of adding Mo (0.8 wt%) and heat treatments (tempering, cryogenic treatment) on the microstructure and mechanical properties of the porous alloys were investigated. The results showed that for the heat-treated porous Fe-8Ni-0.5C alloy, the compressive plateau stress increased as the tempering temperature decreased.
In porous alloys with added Mo and cryogenic treatment, both the plateau stress and energy absorption efficiency were significantly improved, regardless of low or high tempering temperatures, compared to those without cryogenic treatment. The compressive plateau stress and energy absorption, whether at low or high tempering temperatures, were better in the cryogenically treated state. Additionally, the porous alloy containing Mo retained high hardness tempered martensite after tempering, exhibiting the highest compressive plateau stress (664 MPa) and specific energy absorption (80 J/g) in this experiment. Moreover, compared to the porous alloy without Mo, the Mo-containing alloy showed better compressive plateau stress and specific energy absorption under the same heat treatment conditions, further demonstrating that the addition of Mo can effectively enhance the compressive properties.
關鍵字(中) ★ 多孔金屬
★ Fe-Ni-C-Mo合金
★ 平台壓縮應力
★ 能量吸收能力
★ 深冷處理
關鍵字(英) ★ metal foams
★ Fe-Ni-C-Mo alloy
★ compressive plateau stress
★ energy absorption capacity
★ cryogenic treatment
論文目次 摘要 I
ABSTRACT II
謝誌 III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 3
2.1多孔金屬簡介 3
2.2 多孔金屬製備 4
2.2.1 無壓式粉末冶金法 5
2.3 多孔合金機械性質 6
2.4 Fe-8Ni-0.5C-(0.8Mo)合金鋼簡介 9
2.5 Fe-8Ni-0.5C-(0.8Mo)合金鋼之熱處理 9
2.6 合金元素對Fe-8Ni-0.5C-(0.8Mo)合金鋼之影響 11
2.6.1 鎳對Fe-8Ni-0.5C(-0.8Mo)合金鋼的影響 11
2.6.2鉬對Fe-8Ni-0.5C(-0.8Mo)合金鋼的影響 12
第三章 實驗步驟 13
3.1淬火、深冷與回火處理 15
3.2 X光繞射分析(X-ray diffraction) 15
3.3 微結構分析與觀察 16
3.3.1 光學顯微鏡(Optical microscopy, OM) 16
3.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 16
3.3.3 電子背向散射繞射(Electron Back-Scattered Diffraction, EBSD) 16
3.3.4 差示掃描量熱法(Differential Scanning Calorimetry, DSC) 17
3.4 硬度試驗 17
3.5 壓縮試驗 17
第四章 結果與討論 18
4.1合金微結構 18
4.2硬度測試 21
4.3合金X光繞射分析 22
4.4 EBSD分析 24
4.5 DSC分析 25
4.6多孔合金機械性質(壓縮) 28
4.7 多孔合金性質比較 35
4.8多孔合金總整理 37
第五章 結論 39
第六章 參考文獻 41
參考文獻 [ASTM] ASTM, E92-17, “Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials’’, ASTM International, West Conshohocken. (2017)
[ASTM2] ASTM, E9-09, “Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature’’, ASTM International, West Conshohocken. (2019)
[BAI] E. C. Bain, ‘‘Functions of The Alloying Elements In Steel’’, American Society for Metals, pp. 230-246. (1939)
[BEK] N. Bekoz, E. Oktay, ‘‘Mechanical Properties of Low Alloy Seel Foams: Dependency on Porosity and Pore Size’’, Materials Science and Engineering: A, Vol. 576, pp. 82-90. (2013)
[CHE] Z. Chen, J. Qi, H. Liu, L. Sun, H. Wei and G. Wang, ‘‘Bainitic Transformation and Mechanical Properties of Low-Carbon High-Strength Bainitic Steels with Mo Addition’’, Journal of Materials Engineering and Performance, Vol. 29, pp. 2428-2439. (2020)
[DES] V. S. Deshpande, N. A. Fleck, ‘‘High Strain Rate Compressive Behaviour of Aluminium Alloy Foams’’, International Journal of Impact Engineering, Vol. 24, pp. 277-298. (2000)
[GAR] M. Garcia, M. Portanova and A. Rabiei, ‘‘Ballistic Performance of Composite Metal Foams’’, Composite Structures, Vol. 125, pp. 202-211. (2015)
[GIB] L. J. Gibson, ‘‘Cellular Solids’’, Mrs. Bulletin, Vol. 28, pp. 270-274. (2003)
[GOO] R. Goodall, A. Mortensen, ‘‘Porous Metals. In: Physical Metallurgy’’, Elsevier, Vol. 5, pp. 2399-2595. (2014)
[HEI] C. Heiligers, M. Herrmann, I. J. Sigalas and J. H. Neethling, “Microstructure and Properties of Hot-pressed Hf Ti C’’, International Journal of Refractory Metals and Hard Materials, Vol. 25, pp. 300-309. (2007)
[HSU] C. M. Hsu, Y. C. Tzeng, S. F. Chen, Y. L. Chen and H. L. Lee, ‘‘Fabrication of 17‐4PH Stainless Steel Foam by a Pressureless Powder Space Holder Technique’’, Advanced Engineering Materials, Vol. 23, pp. 201-202. (2021)
[KIN] P. King, S. Patel, S. O. Shah, J. Falleur and G. Wewers, “Lower Molybdenum Steels for High Performance Powder Metallurgy Applications’’, Advances in Powder Metallurgy and Particulate Materials, Vol. 7, pp. 1-10. (2006)
[LI] Q. M. Li, I. Magkiriadis and J. J. Harrigan, “Compressive Strain at the Onset of Densification of Cellular Solids’’, Journal of Cellular Plastics, Vol. 42, pp. 371-392. (2006)
[LIN] K. H. Lin, ‘‘Wear Behavior and Mechanical Performance of Metal Injection Molded Fe–2Ni Sintered Components’’, Materials & Design, Vol. 32, pp. 1273-1282. (2011)
[LIN2] S. T. Lin, R. M. German, ‘‘Mechanical Properties of Fully Densified Injection-Molded Carbonyl Iron Powder’’, Metallurgical Transactions A, Vol. 21, pp. 2531-2538. (1990)
[NIS] S. U. Nisa, S. Pandey and P. M. Pandey., ‘‘A Review of the Compressive Properties of Closed-Cell Aluminum Metal Foams’’, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 237, pp. 531-545. (2023)
[ONC] P. R. Onck, R. Van, A. Merkerk, Raaijmakers and J. T. M. De, Hosson, ‘‘Fracture of Open-and Closed-Cell Metal Foams’’, Journal of Mterials Science, Vol. 40, pp. 5821-5828. (2005)
[PRE] M. Preciado, M. Pellizzari, “Influence of Deep Cryogenic Treatment on the Thermal Decomposition of Fe–C Martensite’’, Journal of Materials Science, Vol. 49, pp. 8183-8191. (2014)
[SEN] H. Senillou, ‘‘Powder Injection Moulding-Materials I: Metal Injection Moulding of Fe-8Ni Micronic Pre-alloyed Powders’’, The European Powder Metallurgy Association, pp. 1. (2009)
[SHI] J. D. Shim, J. Y. Byun, ‘‘Production Processes of Porous Metals and Their Applications’’, Korean Journal of Materials Research, Vol. 25, pp. 155-164. (2015)
[TAS] B. Tasdemir, V. L. Tagarielli and A. Pellegrino, ‘‘A Data-Driven Rate and Temperature Dependent Constitutive Model of The Compression Response of a Syntactic Foam’’, Materials Today Communications, Vol. 39, pp. 108-790. (2024)
[TEK] M. Tekin, F. Muhaffel, H. Kotan and M. Baydogan, ‘‘Wear Behavior of In-Situ Oxide Dispersion Strengthened Fe-8Ni Alloy with Zr Additions’’, Journal of Metals, Materials and Minerals, Vol. 33, pp. 1-7. (2023)
[THO] F. Thomas, ‘‘Enhanced Properties of Extra-Fine Nickel Steels for PM Gears’’, Proceedings of the Korean Powder Metallurgy Institute Conference, pp. 393-394. (2006)
[TON] T. Tonomura, ‘‘Properties of Typical Metal Injection Moulded Test Parts’’, Metal Powder Report, Vol. 45, pp. 355-358. (1990)
[TOT] G. E. Totten, ‘‘Steel Heat Treatment: Metallurgy and Technologies’’, CRC Press, pp. 695-702. (2006)
[WU] M. W. Wu, K. S. Hwang, “Formation Mechanism of Weak Ferrite Areas in Ni-containing Powder Metal Steels and Methods of Strengthening Them’’, Materials Science and Engineering: A, pp. 5421-5429. (2010)
[ZHA] H. Zhang, R. M. German, ‘‘Sintering MIM Fe-Ni Alloys’’, International Journal of Powder Metallurgy, Vol. 38, pp. 51-61. (2002)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2024-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明