博碩士論文 111353032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:13.58.232.94
姓名 陳韻珩(YUN-HENG CHEN)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 真空擴散接合製作鋁合金微流道之機械性質與性能研究
(Study on the Mechanical Properties and Performance of Aluminum Alloy Microchannels Fabricated by Vacuum Diffusion Bonding)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在探討真空擴散接合技術在鋁合金製作水冷板中的應用及其
性能表現。鋁合金因其輕量、高強度和良好的導熱性,被廣泛應用於各種
工業領域,包含航空航天、汽車和電子產品中。然而,由於鋁合金具有易
氧化,且其表面存在穩定的氧化層,這些特性給擴散接合技術帶來了挑
戰。
實驗中使用 Al 6061 鋁合金,通過真空擴散接合技術製作水冷板,並 對其進行機械性能測試和多項效率測試。主要目的是通過實驗和分析,討 論各別接合參數(包括溫度、壓力和時間)對於水冷板機械性質的影響, 其中有水冷板壓縮量的變化、水冷板流道與支撐肋的潛變,機械強度的差 異;次之為分析真空擴散接合水冷板的應用性,並測試熱回收效益和作為 電池熱管理的妥適性。
實驗結果顯示,各別的接合參數對於真空擴散接合的壓縮率皆有不同 程度的影響,且溫度、壓力與時間對壓縮率有具有正相關關係,而水冷板 流道的壓縮為接合時發生潛變所致。拉伸剪切試驗中可發現接合面積與剪 切力存在一種正比關係且接合面積越小剪切力越小,此研究的剪切力只有 文獻的 39%,後續可針對流道板的設計進行研究。在性能測試方面,接合 後的水冷板在性能測試和熱回收效率上均表現出色。水冷板的水密性測試顯示,其能夠承受高壓而不洩漏,證明了其在嚴苛環境下的可靠性。此外,熱回收效率測試結果表明,真空擴散接合製作的水冷板具有優異的熱傳導性能,且能有效將熱量從電池表面帶走,提供電池有效的熱管理性機制。
綜合而言,本研究提出真空擴散接合技術在鋁合金製作高性能水冷板
中的可行性和優越性。這不僅為鋁合金在高性能散熱解決方案中的應用提
供了新的可能性,也為擴散接合技術的進一步研究和應用奠定了基礎。
摘要(英) This study aims to investigate the application and performance of vacuum diffusion bonding technology in the production of cold plates made from aluminum alloys. Aluminum alloys are widely used in various industrial fields, including aerospace, automotive, and electronics, due to their lightweight, high strength, and excellent thermal conductivity. However, the characteristics of aluminum alloys, such as their tendency to oxidize easily and the presence of a stable oxide layer on their surface, present challenges for diffusion bonding technology.
In the experiment, Al 6061 aluminum alloy was used to fabricate cold plates through vacuum diffusion bonding technology, and their mechanical properties and multiple efficiency tests were conducted. The main purpose was to discuss the impact of various bonding parameters (including temperature, pressure, and time) on the mechanical properties of the cold plates, such as changes in the compression of the plates, the creep of the channels and support ribs, and differences in mechanical strength. Additionally, the applicability of vacuum diffusion bonded cold plates was analyzed, along with testing the thermal recovery efficiency and suitability for battery thermal management.
The experimental results showed that different bonding parameters had varying degrees of influence on the compression rate of vacuum diffusion bonding. There was a positive correlation between the bonding temperature and holding time on the compression rate, and the compression of the cold plate channels was due to creep during bonding. In tensile shear tests, a proportional relationship between the bonded area and shear force was observed, with smaller bonded areas resulting in lower shear forces. The shear force in this study was only 39% of that reported in the literature. In performance tests, the bonded cold plates exhibited excellent results in performance testing and thermal recovery efficiency. The water tightness test of the plates demonstrated their ability to withstand high pressure without leaking, proving their reliability in harsh environments. Additionally, thermal recovery efficiency test results indicated that cold plates made through vacuum diffusion bonding have excellent thermal conductivity and can effectively remove heat from the battery surface, providing an effective thermal management mechanism for batteries.
Overall, this study demonstrates the feasibility and superiority of vacuum diffusion bonding technology in producing high-performance cold plates from aluminum alloys. This not only provides new possibilities for the application of aluminum alloys in high-performance cooling solutions but also lays the foundation for further research and application of diffusion bonding technology.
關鍵字(中) ★ 擴散接合
★ 鋁合金
★ 水冷板
★ 潛變與壓縮量
★ 熱回收
關鍵字(英) ★ Diffusion bonding
★ Aluminum alloy
★ Cold plate
★ Creep and compression
★ Thermal recovery
論文目次 摘要 ................................................................................................................ i ABSTRACT ................................................................................................. iii
致謝 ............................................................................................................... v 目錄 ............................................................................................................. vii 圖目錄 ........................................................................................................... x 表目錄 ........................................................................................................ xiv 第一章 緒論.......................................................................................... - 1 -
1.1 前言 ...................................................................................... - 1 -
1.2 研究動機 .............................................................................. - 4 -
1.3 研究目的 .............................................................................. - 7 -
第二章 文獻回顧................................................................................ - 10 -
2.1 鋁合金介紹與分類 ............................................................ - 10 -
2.2 擴散接合原理與應用 ........................................................ - 13 -
2.2.1 真空擴散接合介紹......................................................-14-
2.2.2 鋁合金真空擴散接合..................................................-18-
2.3 散熱方式與介紹 ................................................................ - 19 -
2.4 真空硬銲技術與比較 ........................................................ - 24 -
2.5 微流道散熱原理與應用 .................................................... - 25 - vii
2.6
第三章
3.1
2.5.1 微流道以擴散接合製作方法.....................................-28- 擴散接合的微流道技術瓶頸與突破 ................................ - 29 - 實驗方式與試片製作............................................................ - 31 - 實驗假設與理論背景 ........................................................ - 31 - 3.1.1 拉伸試驗對應擴散接合能力說明.............................-31- 3.1.2 真空擴散接合造成邊界潛變現象.............................-33- 3.1.3 水冷板的水密性測試..................................................-35- 3.1.4 熱回收效率計算說明..................................................-36- 3.1.5 水冷板於電池效率妥適性分析.................................-37- 實驗設計與流程 ................................................................ - 42 - 3.2.1 試片設計與流程..........................................................-44- 3.2.2 水冷板的水密性測試方式.........................................-54- 3.2.3 熱回收效率測試..........................................................-55- 3.2.4 妥適性測試..................................................................-62- 儀器使用與參數說明 ........................................................ - 62 - 實驗結果 ................................................................................ - 67 - 機械性質比較 .................................................................... - 67 - 潛變與壓縮量關係 ............................................................ - 73 - 水密性測試結果 ................................................................ - 77 -
3.3
第四章
4.1 4.2 4.3
3.2
viii

4.4
4.5
第五章
熱回收效率結果 ................................................................ - 79 -
電池效率妥適性分析 ........................................................ - 87 - 結論........................................................................................ - 90 - 參考文獻................................................................................................ - 91 -
參考文獻 A.S. Zuruzi, et al., "Diffusion bonding of aluminium alloy 6061 in air using an interface treatment technique," Materials Science and Engineering A, Vols. 259(1):145-148, 1999.
劉國雄, 機械材料學, 全華科技圖書, 1996. 李勝隆, 工程材料科學, 高立圖書出版, 2019. 李勝隆, 金屬熱處理:原理與應用, 全華圖書, 2018.
T. F. Kazakov, Diffusion Bonding of Materials.
莊仁霆, “純正擴散接合用於實用尺寸鋁合金的結合強度評 估,” 國立中央大學, 2023.
A.S. Zuruzi,H. Li, and G. Dong, "Effects of surface roughness on the diffusion bonding of Al alloy 6061 in air," Materials Science and Engineering A270, pp. 244-248, 1999.
H.-S. Lee, "Diffusion bonding of metal alloys in aerospace and other applications," Welding and Joining of Aerospace Materials, pp. 320-344, 2012.
Gaurav Sharma, and Dheerendra Kumar Dwivedi, "Diffusion bonding of 304 austenitic stainless-steel using pressure pulses," Materials Today: Proceedings 44, pp. 2135-2141, 2021.
Venkata Rajesh Saranam, and Brian K. Paul, "Feasibility of Using Diffusion Bonding for Producing Hybrid Printed Circuit Heat Exchangers for Nuclear Energy Applications," ScienceDirect Procedia Manufacturing 26, pp. 560-569, 2018.
Piyush Sabharwall, et al., "Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes," Journal of Thermal Science and Engineering Applications, 3 2013.
Abhishek Mehta, et al., "Tensile behavior of diffusion bonded AA6061 - AA6061 with variation in cooling method," Materials Science and Engineering: A, vol. 882, no. 145459, 2023.
C.N. Niu, et al., "Surface modification of pure aluminum via Ar ion bombardment for Al/Al solid-state diffusion bonding," Materials Characterization, vol. 187, no. 111886, 2022.
W. Melik, et al., "Solide State Diffusion Bonding of Al6061-SiC Nanocomposites," INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING (IJAME), vol. 18, 2021.
陶艳花, "汽车用铝合金扩散焊接工艺与性能研究," HotWorkingTechnology, vol. 43, no. 5, 2014.
O.S. Osman, et al., "Performance enhancement and comprehensive experimental comparative study of cold plate cooling of electronic servers using different configurations of mini-channels flow," Alexandria Engineering Journal, vol. 60, pp. 4451-4459, 2021.
Changkun Wu, and Jimin Ni, "A new design of cooling plate for liquid-cooled battery thermal management system with variable heat transfer path," Applied Thermal Engineering, vol. 239, no. 122107, 2024.
Wenhua Wei, et al., "Analysis and design of module-level liquid cooling system for rectangular Li-ion batteries," International Journal of Heat and Mass Transfer, vol. 225, no. 125435, 2024.
L. M. Fan He, "Thermal management of batteries employing active temperature control and reciprocating cooling flow," International Journal of Heat and Mass Transfer, vol. 83, pp. 164- 172, 2015.
Mohammad Azarifar, et al., "Liquid cooling of data centers: A necessity facing challenges," Applied Thermal Engineering, vol. 247, no. 123112, 2024.
H. Park, "A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles," Journal of Power Sources, vol. 239, pp. 30-36, 2013.
Mohsen Akbarzadeh, et al., "A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module," Applied Thermal Engineering, vol. 198, no. 117503, 2021.
Lisheng Luo, et al., "Investigation of the heat generation characteristics of lithium-ion battery and orthogonal analysis of its constructal cold plate structure parameters," Case Studies in Thermal Engineering, vol. 52, no. 103750, 2023.
Wei Zuo, et al., "Performance comparison between single S- channel and double S-channel cold plate for thermal management of a prismatic LiFePO4 battery," Energy, vol. 192, pp. 46-57, 2022.
Rami Sabbah, et al., "Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution," Journal of Power Sources, vol. 182, no. 2, pp. 630-638, 2008.
Javad Ranjbar Kermani, et al., "Hybrid battery thermal management systems based on phase transition processes: A comprehensive review," Journal of Energy Storage, vol. 86, no. 111227, 2024.
Xuehong Wu, et al., "Experimental and numerical study on hybrid battery thermal management system combining liquid cooling with phase change materials," International Communications in Heat and Mass Transfer, vol. 139, no. 106480, 2022. 牛志伟、毕建勋和李栋, "铝合金微流道散热板真空扩散焊
可靠性及气淬工艺," 航天材料及工艺研究所, 北京, 2019.
國立臺灣大學材料科學與工程學系暨研究所, "傳統難硬銲鋁 合金之真空硬銲低熔點填料金屬開發," 行政院國家科學委員會專 題研究計畫, 台灣, 2007.
侯. 杨鑫鑫, "高效散热窄通道铝合金冷板扩散焊接及成型技 术研究," 制导与引信, vol. 37, no. 1, 2016.
Hamdi E. Ahmed, et al., "Optimization of thermal design of heat sinks: A review," International Journal of Heat and Mass Transfer, vol. 118, pp. 129-153, 2018.
T. Amalesh, and N. Lakshmi Narasimhan, "Introducing new designs of minichannel cold plates for the cooling of Lithium-ion batteries," Journal of Power Sources, vol. 479, no. 228775, 2020.
Furen Zhang, et al., "A new type of liquid-cooled channel thermal characteristics analysis and optimization based on the optimal characteristics of 24 types of channels," International Journal of Heat and Mass Transfer, vol. 202, no. 123734, 2023.
Hayder Mohammad Jaffal, et al., "Performance enhancement of a novel serpentine channel cooled plate used for cooling of Li-ion battery module," International Journal of Thermal Sciences, vol. 184, no. 107955, 2023.
Furen Zhang, et al., "Design and thermal performance analysis of a new micro-fin liquid cooling plate based on liquid cooling channel finning and bionic limulus-like fins," Applied Thermal Engineering, vol. 237, no. 121597, 2024.
Nima Fathi, et al., "On conjugate heat transfer in microchannel heat sinks," International Journal of Thermofluids, no. 100658, 2024.
Kokkula Monika, et al., "Parametric investigation to optimize the thermal management of pouch type lithium-ion batteries with mini- channel cold plates," International Journal of Heat and Mass Transfer, vol. 164, no. 120568, 2021.
Wei Kong, et al., "Investigation on the cooling effect of a novel composite channel cold plate for lithium-ion battery," Journal of Energy Storage, vol. 86, no. 111183, 2024.
Honglei Ren, et al., "Phase-change cooling of lithium-ion battery using parallel mini-channels cold plate with varying flow rate," Case Studies in Thermal Engineering, vol. 45, no. 102960, 2023.
Yi He, Hongwen Yu , et al., "Thermal performance and experimental analysis of stainless steel flat plate solar collector with full-flow channels," Heliyon, vol. 10, no. 7, 2024.
Daeyoung Kong, et al., "An additively manufactured manifold- microchannel heat sink for high-heat flux cooling," International Journal of Mechanical Sciences, vol. 248, no. 108228, 2023.
Shudong Yang, et al., "Investigation of Z-type manifold microchannel cooling for ultra-high heat flux dissipation in power electronic devices," International Journal of Heat and Mass Transfer, vol. 218, no. 124792, 2024.
Shengnan Wang, et al., "A forced gas cooling circle packaging with liquid cooling plate for the thermal management of Li-ion batteries under space environment," Applied Thermal Engineering, vol. 123, pp. 929-939, 2017.
C. B. Dudley, "ASTM International," 1898. [Online]. Available: https://www.astm.org/d1002-10r19.html.
巩云峰、谢兰生和陈明和, "工艺参数对 6061-T6 铝合金真空 扩散焊接," 機械工程材料, vol. 44, no. 2, 2020.
Y Huang, et al., "Diffusion bonding of superplastic 7075 aluminium alloy," Materials Science and Engineering: A, Vols. 266, Issues 1–2, pp. 295-302, 1999.
Tétény Baross, et al., "Diffusion bonding experiments of 316L steels in a Gleeble 3800 thermomechanical simulator for investigation of non-destructive inspection methods," Fusion Engineering and Design, vol. 160, no. 111768, 2020.
Tétény Baross, et al,, "The bonded area growth at diffusion bonding determined by the numerical modelling of Gleeble 3800 experiments and in comparison with the model by Hill and Wallach," Fusion Engineering and Design, vol. 194, no. 113707, 2023.
Jiaqiang E, et al., "Investigation on thermal performance and pressure loss of the fluid cold-plate used in thermal management system of the battery pack," Applied Thermal Engineering, vol. 145, p. 552_568, 2018.
Hongsheng Jiang, et al., "Online parameter estimation of cold plate based on extended Kalman filter," Energy Procedia, vol. 158, pp. 1850-1855, 2019.
Ashkan Nazari, and Siamak Farhad, "Heat Generation in Lithium-ion Batteries with Different Nominal Capacities and Chemistries," Applied Thermal Engineering, no. DOI: 10.1016/j.applthermaleng.2017.07.126, 2017.
Huanhuan Li, et al., "Electrochemical and thermal characteristics of prismatic lithium-ion battery based on a three-dimensional electrochemical-thermal coupled model," Journal of Energy Storage, vol. 42, 2021.
Linpei Zhu, et al., "Thermal analysis and optimization of an EV battery pack for real applications," International Journal of Heat and Mass Transfer, no. DOI: 10.1016/j.ijheatmasstransfer.2020.120384, 2020.
Meixian Tan, et al., "Effect of initial temperature on electrochemical and thermal characteristics of a lithium-ion battery during charging process," Applied Thermal Engineering, vol. 177, 2020.
Saeed Kazemiabnavi, et al., "A Density Functional Theory Based Study of the Electron Transfer Reaction at the Cathode–Electrolyte Interface in Lithium–Air Batteries," Physical Chemistry Chemical Physics, no. DOI: 10.1039/C4CP06121G, 2015.
Saeed Kazemiabnavi, et al., "Ab Initio Modeling of the Electron Transfer Reaction Rate at the Electrode-Electrolyte Interface in Lithium-Air Batteries," in ASME 2014 International Mechanical Engineering Congress and Exposition, Canada, 2014.
Saeed Kazemiabnavi, et al., "Density Functional Theory Based Study of the Electron Transfer Reaction at the Lithium Metal Anode in a Lithium–Air Battery with Ionic Liquid Electrolytes," The Journal of Physical Chemistry, no. DOI: 10.1021/jp506563j, 2014.
Chunjing Lin, et al., "Measurement of heat generation in a 40 Ah - 99 -
LiFePO4 prismatic battery using accelerating rate calorimetry," International Journal of Hydrogen Energy, vol. 43, pp. 8375-8384, 2018.
賴耿陽, 鋁合金構造設計輯覽, 台南市: 復漢出版社, 1997. M. Nicholas, Joining Processes.
Piyush Sabharwall, Denis E. Clark , and Michael V., "Diffusion- Welded Microchannel Heat Exchanger for Industrial Processes," Journal of Thermal Science and Engineering Applications, vol. 10.1115/1.4007578, 2013.
Hadis Zarrin, et al., "Effects of Diffusive Charge Transfer and Salt Concentration Gradient in Electrolyte on Li-ion Battery Energy and Power Densities," Electrochimica Acta, vol. 125, pp. 117-123, 2014.
Siamak Farhad , and Feridun Hamdullahpur, "Micro-modeling of porous composite anodes for solid oxide fuel cells," AIChE Journal, no. DOI 10.1002/aic.12689, 2012.
Siamak Farhad,et al., "Effect of composite electrode microstructure on temperature distribution in solid oxide fuel cells," Electrochimica Acta, vol. 99, pp. 9-14, 2013.
Ali Ghorbani Kashkooli, et al., "Effect of convective mass transfer on lead-acid battery performance," Electrochimica Acta, vol. 97, pp. 278-288, 2013.
Ali Ghorbani Kashkooli, et al., "Effects of structural design on the performance of electrical double layer capacitors," Applied Energy, vol. 138, pp. 631-639, 2015.
A.P.C. Sarmiento, et al., "Thermal performance of diffusion- bonded compact heat exchangers," International Journal of Thermal Sciences, vol. 106384, 2020.
D. Palanisamy, et al., "Statistical optimization of parameters for enhanced properties of diffusion bonded AA6061 and AA 7075 aluminium alloys," Materials Today: Proceedings, vol. 39, pp. 388- 397, 2021.
指導教授 李雄(Lee, Shyong) 審核日期 2024-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明