參考文獻 |
Adhikary, D. D., & Gupta, D. (2021). Applying over 100 classifiers for churn prediction in telecom companies. Multimedia Tools and Applications, 80(28), 35123-35144.
Ahn, J., Hwang, J., Kim, D., Choi, H., & Kang, S. (2020). A survey on churn analysis in various business domains. IEEE Access, 8, 220816-220839.
Agresti, A. (2012). Categorical data analysis (Vol. 792). John Wiley & Sons.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Berger, P., & Kompan, M. (2019). User modeling for churn prediction in E-commerce. IEEE Intelligent Systems, 34(2), 44-52.
Banerjee, T., Mukherjee, G., Dutta, S., & Ghosh, P. (2019). A large-scale constrained joint modeling approach for predicting user activity, engagement, and churn with application to freemium mobile games. Journal of the American Statistical Association.
Cenggoro, T. W., Wirastari, R. A., Rudianto, E., Mohadi, M. I., Ratj, D., & Pardamean, B. (2021). Deep learning as a vector embedding model for customer churn. Procedia Computer Science, 179, 624-631.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357.
Chou, P., Chuang, H. H. C., Chou, Y. C., & Liang, T. P. (2022). Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning. European Journal of Operational Research, 296(2), 635-651.
Chen, M. (2019, October). Music streaming service prediction with MapReduce-based artificial neural network. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 0924-0928). IEEE.
Coussement, K., Benoit, D. F., & Van den Poel, D. (2010). Improved marketing decision making in a customer churn prediction context using generalized additive models. Expert systems with Applications, 37(3), 2132-2143.
Douzas, G., Bacao, F., & Last, F. (2018). Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Information sciences, 465, 1-20.
Guitart, A., Chen, P. P., & Periáñez, Á. (2018). The winning solution to the IEEE CIG 2017 game data mining competition. Machine Learning and Knowledge Extraction, 1(1), 252-264.
Han, H., Wang, W. Y., & Mao, B. H. (2005, August). Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In International conference on intelligent computing (pp. 878-887). Berlin, Heidelberg: Springer Berlin Heidelberg.
He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence) (pp. 1322-1328). Ieee.
Hu, X., Shi, Z., Yang, Y., & Chen, L. (2020, April). Classification method of internet catering customer based on improved RFM model and cluster analysis. In 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA) (pp. 28-31). IEEE.
Hudaib, A., Dannoun, R., Harfoushi, O., Obiedat, R., & Faris, H. (2015). Hybrid data mining models for predicting customer churn. International Journal of Communications, Network and System Sciences, 8(5), 91-96.
Keiningham, T. L., Cooil, B., Aksoy, L., Andreassen, T. W., & Weiner, J. (2007). The value of different customer satisfaction and loyalty metrics in predicting customer retention, recommendation, and share‐of‐wallet. Managing service quality: An international Journal, 17(4), 361-384.
Lee, E., Kim, B., Kang, S., Kang, B., Jang, Y., & Kim, H. K. (2018). Profit optimizing churn prediction for long-term loyal customers in online games. IEEE Transactions on Games, 12(1), 41-53.
Lee, E., Jang, Y., Yoon, D. M., Jeon, J., Yang, S. I., Lee, S. K., ... & Kim, K. J. (2018). Game data mining competition on churn prediction and survival analysis using commercial game log data. IEEE Transactions on Games, 11(3), 215-226.
Martínez, A., Schmuck, C., Pereverzyev Jr, S., Pirker, C., & Haltmeier, M. (2020). A machine learning framework for customer purchase prediction in the non-contractual setting. European Journal of Operational Research, 281(3), 588-596.
Ko, Y. H., Hsu, P. Y., Cheng, M. S., Jheng, Y. R., & Luo, Z. C. (2019). Customer retention prediction with CNN. In Data Mining and Big Data: 4th International Conference, DMBD 2019, Chiang Mai, Thailand, July 26–30, 2019, Proceedings 4 (pp. 104-113). Springer Singapore.
Milošević, M., Živić, N., & Andjelković, I. (2017). Early churn prediction with personalized targeting in mobile social games. Expert Systems with Applications, 83, 326-332.
Nguyen, H. M., Cooper, E. W., & Kamei, K. (2011). Borderline over-sampling for imbalanced data classification. International Journal of Knowledge Engineering and Soft Data Paradigms, 3(1), 4-21.
Nie, G., Rowe, W., Zhang, L., Tian, Y., & Shi, Y. (2011). Credit card churn forecasting by logistic regression and decision tree. Expert Systems with Applications, 38(12), 15273-15285.
Radosavljevik, D., van der Putten, P., & Larsen, K. K. (2010). The impact of experimental setup in prepaid churn prediction for mobile telecommunications: What to predict, for whom and does the customer experience matter?. Trans. Mach. Learn. Data Min., 3(2), 80-99.
Sharma, H., & Kumar, S. (2016). A survey on decision tree algorithms of classification in data mining. International Journal of Science and Research (IJSR), 5(4), 2094-2097.
Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., & Kim, S. W. (2019). A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE access, 7, 60134-60149.
Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. (2015). A comparison of machine learning techniques for customer churn prediction. Simulation Modelling Practice and Theory, 55, 1-9.
Wu, S., Yau, W. C., Ong, T. S., & Chong, S. C. (2021). Integrated churn prediction and customer segmentation framework for telco business. Ieee Access, 9, 62118-62136.
Wang, Q. F., Xu, M., & Hussain, A. (2019). Large-scale ensemble model for customer churn prediction in search ads. Cognitive Computation, 11, 262-270.
Yang, W., Huang, T., Zeng, J., Yang, G., Cai, J., Chen, L., ... & Liu, Y. E. (2019, August). Mining player in-game time spending regularity for churn prediction in free online games. In 2019 ieee conference on games (cog) (pp. 1-8). IEEE.
Zhang, R., Li, W., Tan, W., & Mo, T. (2017, June). Deep and shallow model for insurance churn prediction service. In 2017 IEEE international conference on services computing (SCC) (pp. 346-353). IEEE. |