參考文獻 |
Sandhu, A. K. (2021). Big data with cloud computing: Discussions and challenges. Big Data Mining and Analytics, 5(1), 32-40.
[2] Khanra, S., Dhir, A., & Mäntymäki, M. (2020). Big data analytics and enterprises: a bibliometric synthesis of the literature. Enterprise Information Systems, 14(6), 737-768.
[3] Munson, M. A. (2012). A study on the importance of and time spent on different modeling steps. ACM SIGKDD Explorations Newsletter, 13(2), 65-71.
[4] Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of educational research, 74(4), 525-556.
[5] Jena, M., & Dehuri, S. (2022). An Integrated Novel Framework for Coping Missing Values Imputation and Classification. IEEE Access, 10, 69373-69387.
[6] Lin, W. C., & Tsai, C. F. (2020). Missing value imputation: a review and analysis of the literature (2006–2017). Artificial Intelligence Review, 53, 1487-1509.
[7] Miao, X., Wu, Y., Chen, L., Gao, Y., & Yin, J. (2022). An experimental survey of missing data imputation algorithms. IEEE Transactions on Knowledge and Data Engineering.
[8] White, I. R., Royston, P., & Wood, A. M. (2011). Multiple imputation using chained equations: issues and guidance for practice. Statistics in medicine, 30(4), 377-399.
[9] Donders, A. R. T., Van Der Heijden, G. J., Stijnen, T., & Moons, K. G. (2006). A gentle introduction to imputation of missing values. Journal of clinical epidemiology, 59(10), 1087-1091.
[10] Zhu, X., Zhang, S., Jin, Z., Zhang, Z., & Xu, Z. (2010). Missing value estimation for mixed-attribute data sets. IEEE Transactions on Knowledge and Data Engineering, 23(1), 110-121.
[11] Tsai, C. F., & Hu, Y. H. (2022). Empirical comparison of supervised learning techniques for missing value imputation. Knowledge and Information Systems, 64(4), 1047-1075.
[12] Jenghara, M. M., Ebrahimpour-Komleh, H., Rezaie, V., Nejatian, S., Parvin, H., & Yusof, S. K. S. (2018). Imputing missing value through ensemble concept based on statistical measures. Knowledge and Information Systems, 56, 123-139.
[13] Batra, S., Khurana, R., Khan, M. Z., Boulila, W., Koubaa, A., & Srivastava, P. (2022). A Pragmatic Ensemble Strategy for Missing Values Imputation in Health Records. Entropy, 24(4), 533.
[14] Van Buuren, S. (2018). Flexible imputation of missing data. CRC press.
[15] Ayilara, O. F., Zhang, L., Sajobi, T. T., Sawatzky, R., Bohm, E., & Lix, L. M. (2019). Impact of missing data on bias and precision when estimating change in patient-reported outcomes from a clinical registry. Health and quality of life outcomes, 17, 1-9.
[16] Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592.
[17] Newman, D. A. (2014). Missing data: Five practical guidelines. Organizational Research Methods, 17(4), 372-411.
[18] Tseng, C. H., Elashoff, R., Li, N., & Li, G. (2016). Longitudinal data analysis with non-ignorable missing data. Statistical methods in medical research, 25(1), 205-220.
[19] Buhi, E. R., Goodson, P., & Neilands, T. B. (2008). Out of sight, not out of mind: Strategies for handling missing data. American journal of health behavior, 32(1), 83-92.
[20] Faria, R., Gomes, M., Epstein, D., & White, I. R. (2014). A guide to handling missing data in cost-effectiveness analysis conducted within randomised controlled trials. Pharmacoeconomics, 32(12), 1157-1170.
[21] Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan kaufmann.
[22] Orme, J. G., & Reis, J. (1991). Multiple regression with missing data. Journal of Social Service Research, 15(1-2), 61-91.
[23] Madley-Dowd, P., Hughes, R., Tilling, K., & Heron, J. (2019). The proportion of missing data should not be used to guide decisions on multiple imputation. Journal of clinical epidemiology, 110, 63-73.
[24] Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern missing data analyses. Journal of school psychology, 48(1), 5-37.
[25] Manly, C. A., & Wells, R. S. (2015). Reporting the use of multiple imputation for missing data in higher education research. Research in Higher Education, 56, 397-409.
[26] Scheffer, J. (2002). Dealing with missing data.
[27] Miao, X., Wu, Y., Chen, L., Gao, Y., & Yin, J. (2022). An experimental survey of missing data imputation algorithms. IEEE Transactions on Knowledge and Data Engineering.
[28] Zhang, Z. (2016). Missing data imputation: focusing on single imputation. Annals of translational medicine, 4(1).
[29] García-Laencina, P. J., Sancho-Gómez, J. L., & Figueiras-Vidal, A. R. (2010). Pattern classification with missing data: a review. Neural Computing and Applications, 19, 263-282.
[30] Bø, T. H., Dysvik, B., & Jonassen, I. (2004). LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic acids research, 32(3), e34-e34.
[31] Mostafa, S. M. (2019). Imputing missing values using cumulative linear regression. CAAI Transactions on Intelligence Technology, 4(3), 182-200.
[32] Batista, G. E., & Monard, M. C. (2003). An analysis of four missing data treatment methods for supervised learning. Applied artificial intelligence, 17(5-6), 519-533.
[33] Loh, W. Y. (2011). Classification and regression trees. Wiley interdisciplinary reviews: data mining and knowledge discovery, 1(1), 14-23.
[34] Fix, E., & Hodges, J. L. (1952). Discriminatory analysis: Nonparametric discrimination: Small sample performance.
[35] Zhang, S. (2012). Nearest neighbor selection for iteratively kNN imputation. Journal of Systems and Software, 85(11), 2541-2552.
[36] Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
[37] Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine learning, 63, 3-42.
[38] Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118.
[39] Silva-Ramírez, E. L., Pino-Mejías, R., López-Coello, M., & Cubiles-de-la-Vega, M. D. (2011). Missing value imputation on missing completely at random data using multilayer perceptrons. Neural Networks, 24(1), 121-129.
[40] Witten, I. H., & Frank, E., 2005. Data Mining: Practical machine learning tools and techniques: Morgan Kaufmann.
[41] D. E. Rumelhart, G. E. Hinton and R. J. Williams, 1986. “Learning Internal Representations by Error Propagation,” in D. E. Rumelhart and J. L. McCelland (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Vol 1: Foundations. MIT Press.
[42] Rubin, D. B, 1988. An overview of multiple imputation. In Proceedings of
the survey research methods section of the American statistical association (pp.
79-84). Princeton, NJ, USA: Citeseer
[43] Yucel, R. M. (2011). State of the multiple imputation software. Journal of statistical software, 45(1).
[44] Van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification. Statistical methods in medical research, 16(3), 219-242.
[45] Dietterich, T. G. (2000). Ensemble methods in machine learning. In International workshop on multiple classifier systems (pp. 1-15). Berlin, Heidelberg: Springer Berlin Heidelberg.
[46] Kim, M. J., & Kang, D. K. (2012). Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction. Expert Systems with applications, 39(10), 9308-9314.
[47] Mienye, I. D., & Sun, Y. (2022). A survey of ensemble learning: Concepts, algorithms, applications, and prospects. IEEE Access, 10, 99129-99149.
[48] Bühlmann, P. (2012). Bagging, boosting and ensemble methods. Handbook of computational statistics: Concepts and methods, 985-1022.
[49] Garciarena, U., & Santana, R. (2017). An extensive analysis of the interaction between missing data types, imputation methods, and supervised classifiers. Expert Systems with Applications, 89, 52-65.
[50] Tsai, C. F., Li, M. L., & Lin, W. C. (2018). A class center based approach for missing value imputation. Knowledge-Based Systems, 151, 124-135.
[51]. Sun, Y., Li, J., Xu, Y., Zhang, T., & Wang, X. (2023). Deep learning versus conventional methods for missing data imputation: A review and comparative study. Expert Systems with Applications, 12020. |