參考文獻 |
[1] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation systems: Principles, methods and evaluation,” Egypt. Inform. J., vol. 16, no. 3, pp. 261–273, Nov. 2015, doi: 10.1016/j.eij.2015.06.005.
[2] P. Lops, M. de Gemmis, and G. Semeraro, “Content-based Recommender Systems: State of the Art and Trends,” in Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds., Boston, MA: Springer US, 2011, pp. 73–105. doi: 10.1007/978-0-387-85820-3_3.
[3] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative Filtering beyond the User-Item Matrix: A Survey of the State of the Art and Future Challenges,” ACM Comput. Surv., vol. 47, no. 1, p. 3:1-3:45, May 2014, doi: 10.1145/2556270.
[4] P. B.Thorat, R. M. Goudar, and S. Barve, “Survey on Collaborative Filtering, Content-based Filtering and Hybrid Recommendation System,” Int. J. Comput. Appl., vol. 110, no. 4, pp. 31–36, Jan. 2015, doi: 10.5120/19308-0760.
[5] X. Chen, A. Reibman, and S. Arora, “Sequential Recommendation Model for Next Purchase Prediction,” in Machine Learning & Applications, Academy & Industry Research Collaboration, Jun. 2023, pp. 141–158. doi: 10.5121/csit.2023.131013.
[6] Z. Wang, X. Chen, R. Zhou, Q. Dai, Z. Dong, and J.-R. Wen, “Sequential Recommendation with Causal Behavior Discovery.” arXiv, Dec. 12, 2022. Accessed: Sep. 22, 2023. [Online]. Available: http://arxiv.org/abs/2204.00216
[7] S. Rendle, “Factorization Machines,” in 2010 IEEE International Conference on Data Mining, Feb. 2010, pp. 995–1000. doi: 10.1109/ICDM.2010.127.
[8] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based Recommendations with Recurrent Neural Networks.” arXiv, Mar. 29, 2016. doi: 10.48550/arXiv.1511.06939.
[9] Q. Cui, S. Wu, Q. Liu, W. Zhong, and L. Wang, “MV-RNN: A Multi-View Recurrent Neural Network for Sequential Recommendation.” arXiv, Nov. 20, 2018. doi: 10.48550/arXiv.1611.06668.
[10] J. Tang and K. Wang, “Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding.” arXiv, Sep. 19, 2018. doi: 10.48550/arXiv.1809.07426.
[11] W.-C. Kang and J. McAuley, “Self-Attentive Sequential Recommendation.” arXiv, Aug. 20, 2018. doi: 10.48550/arXiv.1808.09781.
[12] K. Zhou, H. Wang, W. X. Zhao, Y. Zhu, S. Wang, F. Zhang, Z. Wang, and J.-R. Wen, “S^3-Rec: Self-Supervised Learning for Sequential Recommendation with Mutual Information Maximization,” in Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Oct. 2020, pp. 1893–1902. doi: 10.1145/3340531.3411954.
[13] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer,” in Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing China: ACM, Nov. 2019, pp. 1441–1450. doi: 10.1145/3357384.3357895.
[14] L. Wu, S. Li, C.-J. Hsieh, and J. Sharpnack, “SSE-PT: Sequential Recommendation Via Personalized Transformer,” in Proceedings of the 14th ACM Conference on Recommender Systems, in RecSys ’20. New York, NY, USA: Association for Computing Machinery, Sep. 2020, pp. 328–337. doi: 10.1145/3383313.3412258.
[15] “A Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark Datasets,” ar5iv. Accessed: Mar. 06, 2024. [Online]. Available: https://ar5iv.labs.arxiv.org/html/2305.18486
[16] “Text Summarization Using Large Language Models: A Comparative Study of MPT-7b-instruct, Falcon-7b-instruct, and OpenAI Chat-GPT Models,” ar5iv. Accessed: Mar. 05, 2024. [Online]. Available: https://ar5iv.labs.arxiv.org/html/2310.10449
[17] “Benchmarking Large Language Models for News Summarization,” ar5iv. Accessed: Mar. 05, 2024. [Online]. Available: https://ar5iv.labs.arxiv.org/html/2301.13848
[18] T. Bujlow, V. Carela-Espanol, B.-R. Lee, and P. Barlet-Ros, “A Survey on Web Tracking: Mechanisms, Implications, and Defenses,” Proc. IEEE, vol. 105, no. 8, pp. 1476–1510, Aug. 2017, doi: 10.1109/JPROC.2016.2637878.
[19] J. Schwartz, “Giving Web a Memory Cost Its Users Privacy,” The New York Times, Sep. 04, 2001. Accessed: Mar. 10, 2024. [Online]. Available: https://www.nytimes.com/2001/09/04/business/giving-web-a-memory-cost-its-users-privacy.html
[20] H. Dao, J. Mazel, and K. Fukuda, “CNAME Cloaking-Based Tracking on the Web: Characterization, Detection, and Protection,” IEEE Trans. Netw. Serv. Manag., vol. 18, no. 3, pp. 3873–3888, Sep. 2021, doi: 10.1109/TNSM.2021.3072874.
[21] A. Randall, P. Snyder, A. Ukani, A. Snoeren, G. Voelker, S. Savage, and A. Schulman, “Trackers Bounce Back: Measuring Evasion of Partitioned Storage in the Wild.” arXiv, Jul. 12, 2022. Accessed: Mar. 10, 2024. [Online]. Available: http://arxiv.org/abs/2203.10188
[22] “Intelligent Tracking Prevention 2.2,” WebKit. Accessed: Mar. 10, 2024. [Online]. Available: https://webkit.org/blog/8828/intelligent-tracking-prevention-2-2/
[23] J. R. Mayer, “‘Any person... a pamphleteer:’ Internet Anonymity in the Age of Web 2.0”.
[24] P. Eckersley, “How Unique Is Your Web Browser?,” in Privacy Enhancing Technologies, vol. 6205, M. J. Atallah and N. J. Hopper, Eds., in Lecture Notes in Computer Science, vol. 6205. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–18. doi: 10.1007/978-3-642-14527-8_1.
[25] O. A. Abass and O. A. Arowolo, “Information Retrieval Models, Techniques and Applications,” vol. 2, no. 2.
[26] W. B. Croft, D. Metzler, and T. Strohman, “Search Engines Information Retrieval in Practice”.
[27] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620, Nov. 1975, doi: 10.1145/361219.361220.
[28] A. Bellogín and A. Said, “Information Retrieval and Recommender Systems,” in Data Science in Practice, A. Said and V. Torra, Eds., in Studies in Big Data. , Cham: Springer International Publishing, 2019, pp. 79–96. doi: 10.1007/978-3-319-97556-6_5.
[29] Ch. Aswani Kumar, M. Radvansky, and J. Annapurna, “Analysis of a Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for Information Retrieval,” Cybern. Inf. Technol., vol. 12, no. 1, pp. 34–48, Mar. 2012, doi: 10.2478/cait-2012-0003.
[30] A. A. Adebiyi, O. M. Ogunleye, M. Adebiyi, and J. O. OKesola, “A Comparative Analysis of TF-IDF, LSI and LDA in Semantic Information Retrieval Approach for Paper-Reviewer Assignment,” J. Eng. Appl. Sci., vol. 14, no. 10, Art. no. 10, 2019.
[31] M. W. Berry, S. T. Dumais, and G. W. O’Brien, “Using Linfeoarr Algebra Intelligent Information Retrieval”.
[32] B. Rosario, “Latent Semantic Indexing: An overview”.
[33] S. Dumais, “Latent Semantic Indexing (LSI) and TREC-2,” presented at the Text Retrieval Conference, 1993. Accessed: Oct. 07, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Latent-Semantic-Indexing-(LSI)-and-TREC-2-Dumais/5dc31d2fa745ef07541666bdee815b38d6be1ea9
[34] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized Markov chains for next-basket recommendation,” in Proceedings of the 19th international conference on World wide web, in WWW ’10. New York, NY, USA: Association for Computing Machinery, Apr. 2010, pp. 811–820. doi: 10.1145/1772690.1772773.
[35] R. He and J. McAuley, “Fusing Similarity Models with Markov Chains for Sparse Sequential Recommendation.” arXiv, Sep. 28, 2016. doi: 10.48550/arXiv.1609.09152.
[36] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative Study of CNN and RNN for Natural Language Processing.” arXiv, Feb. 07, 2017. Accessed: Sep. 29, 2023. [Online]. Available: http://arxiv.org/abs/1702.01923
[37] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan, “A Dynamic Recurrent Model for Next Basket Recommendation,” in Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, Pisa Italy: ACM, Jul. 2016, pp. 729–732. doi: 10.1145/2911451.2914683.
[38] F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He, “A Simple Convolutional Generative Network for Next Item Recommendation.” arXiv, Nov. 28, 2018. doi: 10.48550/arXiv.1808.05163.
[39] S. Wang, L. Hu, Y. Wang, L. Cao, Q. Z. Sheng, and M. Orgun, “Sequential Recommender Systems: Challenges, Progress and Prospects,” in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China: International Joint Conferences on Artificial Intelligence Organization, Aug. 2019, pp. 6332–6338. doi: 10.24963/ijcai.2019/883.
[40] S. Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath, “An Attentive Survey of Attention Models.” arXiv, Jul. 12, 2021. Accessed: Sep. 30, 2023. [Online]. Available: http://arxiv.org/abs/1904.02874
[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. ukasz Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2017. Accessed: Jun. 22, 2024. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
[42] P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive Representation Learning: A Framework and Review,” IEEE Access, vol. 8, pp. 193907–193934, 2020, doi: 10.1109/ACCESS.2020.3031549.
[43] “Deep Residual Learning for Image Recognition | IEEE Conference Publication | IEEE Xplore.” Accessed: Oct. 26, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/7780459
[44] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization.” arXiv, Jul. 21, 2016. doi: 10.48550/arXiv.1607.06450.
[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan. 2014.
[46] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “Indexing by latent semantic analysis,” J. Am. Soc. Inf. Sci., vol. 41, no. 6, pp. 391–407, 1990, doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9.
[47] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR: Bayesian Personalized Ranking from Implicit Feedback,” 2009.
[48] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, “Image-based Recommendations on Styles and Substitutes.” arXiv, Jun. 15, 2015. Accessed: Nov. 11, 2023. [Online]. Available: http://arxiv.org/abs/1506.04757
[49] K. Zhou, H. Yu, W. X. Zhao, and J.-R. Wen, “Filter-enhanced MLP is All You Need for Sequential Recommendation,” arXiv.org. Accessed: Jun. 13, 2023. [Online]. Available: https://arxiv.org/abs/2202.13556v1
7 |