博碩士論文 111423040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:18.191.132.105
姓名 李泳輝(LI,YONG-HUEI)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 CondBERTRec : 結合序列推薦模型和資訊檢索方法進行下一個項目推薦
(CondBERTRec : Combining Sequential Recommendation Models and Information Retrieval Methods for Next-Item Recommendation)
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 基於文字履歷及人格特質應用機械學習改善錄用品質
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 關聯式資料庫之廣義知識探勘
★ 考量屬性值取得延遲的決策樹建構★ 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題
★ 利用分割式分群演算法找共識群解群體決策問題★ 以新奇的方法有序共識群應用於群體決策問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 隨著電子商務的蓬勃發展,使用Cookies和數位指紋等追蹤技術來收集大量的用戶行為和商品數據已成為常態。目前,主要有兩種技術幫助用戶迅速找到符合他們需求的商品和資訊:資訊檢索系統和推薦系統。然而,傳統的資訊檢索系統僅基於關鍵字搜索提供結果,缺少個性化推薦能力。推薦系統雖然可依據消費行為提供個性化建議,但常忽略用戶當前的搜索意圖,限制了推薦的即時性和準確性。
為了解決這些問題,我們提出了一個新的架構CondBERTRec,結合了資訊檢索的即時性和推薦系統的個性化特徵。CondBERTRec通過分析用戶的消費行為和搜索紀錄,綜合考慮長短期偏好和即時需求來生成精確的個性化推薦。此架構的核心在於它能夠同時處理用戶的即時搜索意圖和長短期消費模式,克服傳統系統的局限,提供更精確、更符合用戶當前需求的推薦,從而提升用戶滿意度和體驗。
在本研究中,我們使用兩個真實世界的資料進行實驗,結果顯示我們的方法在處理中到高品質的關鍵字搜索記錄時,性能優於其他現有的序列推薦方法。相對於傳統的資訊檢索方法和序列模型,CondBERTRec表現出更高的穩定性和適應性,特別是在處理關鍵字品質一般的用戶搜索記錄情境時,更顯得合適。
摘要(英) As e-commerce evolves, the integration of tracking technologies like cookies and digital fingerprints is crucial for collecting extensive user behavior and product data. Currently, two main technologies that help users quickly find products and information that meet their needs: information retrieval systems and recommendation systems. However, traditional information retrieval systems provide results based solely on keyword searches, lacking personalized recommendation capabilities. Although recommendation systems can provide personalized suggestions based on consumer behavior, they often overlook the user′s current search intent, limiting the immediacy and accuracy of the recommendations.
To bridge these gaps, we introduce CondBERTRec, a novel framework that synergizes the immediacy of information retrieval with the personalization of recommendation systems. This framework uniquely analyzes both the user′s long-term and short-term consumption behaviors and immediate search needs, offering more precise and timely recommendations.
In this study, we conducted experiments with two real-world datasets, and the results show that our method outperforms other existing sequence recommendation methods when dealing with medium to high-quality keyword search records. Compared to traditional information retrieval methods and sequence models, CondBERTRec exhibits higher stability and adaptability, especially in scenarios involving user search records of average keyword quality.
Keyword
關鍵字(中) ★ 序列化推薦
★ 個性化推畫
★ 資訊檢索
★ Tramsformer
★ 深度學習
關鍵字(英) ★ Sequential recommendation
★ Personalize recommendation
★ Information retrieval
★ Transformer
★ Deep learning
論文目次 摘要 ............................................................................................................................................. i
ABSTRACT ............................................................................................................................... ii
List of Figures ............................................................................................................................ v
List of Tables ............................................................................................................................. vi
1 Introduction ............................................................................................................................. 1
2 Related Work ........................................................................................................................... 9
2.1 Web Tracking Techniques ............................................................................................ 9
2.2 Information Retrieval ................................................................................................. 11
2.3 Sequential-based Recommendation ........................................................................... 13
2.4 Summary .................................................................................................................... 16
3 Proposed Approach ............................................................................................................... 18
3.1 Problem Definition and Notation Explanation ........................................................... 18
3.2 Model Architecture ..................................................................................................... 19
3.3 Sequential Behavior Modeling Phase ........................................................................ 21
3.3.1 Embedding layer ............................................................................................. 21
3.3.2 Transformer layer ............................................................................................ 22
3.3.3 Projection layer ............................................................................................... 25
3.4 Information Retrieval Model Modeling Phase ........................................................... 26
3.5 Prediction Phase ......................................................................................................... 27
3.6 Training Model ........................................................................................................... 28
4 Experiment ............................................................................................................................ 31
4.1 Datasets ...................................................................................................................... 31
4.2 Evaluation Metrics ..................................................................................................... 32
4.3 Baselines Settings ....................................................................................................... 34
4.4 Experimental Platform ............................................................................................... 36
4.5 Overall Performance Comparison .............................................................................. 36
4.6 Impact of Keyword Quality ........................................................................................ 40
4.7 Impact of # Keywords ................................................................................................ 43
4.8 Impact of LSI Model Topic Number .......................................................................... 44
4.9 Impact of Mask Proportion ρ ..................................................................................... 47
5 Conclusion ............................................................................................................................. 49
5.1 Conclusion .................................................................................................................. 49
5.2 Future Work ................................................................................................................ 50
6 Reference ............................................................................................................................... 52
7 Appendix ............................................................................................................................... 57
7.1 Hidden Dimensionality ? ........................................................................................... 57
7.2 Batch size ? ............................................................................................................... 57
7.3 Learning rate ?? .......................................................................................................... 58
參考文獻 [1] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh, “Recommendation systems: Principles, methods and evaluation,” Egypt. Inform. J., vol. 16, no. 3, pp. 261–273, Nov. 2015, doi: 10.1016/j.eij.2015.06.005.
[2] P. Lops, M. de Gemmis, and G. Semeraro, “Content-based Recommender Systems: State of the Art and Trends,” in Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Eds., Boston, MA: Springer US, 2011, pp. 73–105. doi: 10.1007/978-0-387-85820-3_3.
[3] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative Filtering beyond the User-Item Matrix: A Survey of the State of the Art and Future Challenges,” ACM Comput. Surv., vol. 47, no. 1, p. 3:1-3:45, May 2014, doi: 10.1145/2556270.
[4] P. B.Thorat, R. M. Goudar, and S. Barve, “Survey on Collaborative Filtering, Content-based Filtering and Hybrid Recommendation System,” Int. J. Comput. Appl., vol. 110, no. 4, pp. 31–36, Jan. 2015, doi: 10.5120/19308-0760.
[5] X. Chen, A. Reibman, and S. Arora, “Sequential Recommendation Model for Next Purchase Prediction,” in Machine Learning & Applications, Academy & Industry Research Collaboration, Jun. 2023, pp. 141–158. doi: 10.5121/csit.2023.131013.
[6] Z. Wang, X. Chen, R. Zhou, Q. Dai, Z. Dong, and J.-R. Wen, “Sequential Recommendation with Causal Behavior Discovery.” arXiv, Dec. 12, 2022. Accessed: Sep. 22, 2023. [Online]. Available: http://arxiv.org/abs/2204.00216
[7] S. Rendle, “Factorization Machines,” in 2010 IEEE International Conference on Data Mining, Feb. 2010, pp. 995–1000. doi: 10.1109/ICDM.2010.127.
[8] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based Recommendations with Recurrent Neural Networks.” arXiv, Mar. 29, 2016. doi: 10.48550/arXiv.1511.06939.
[9] Q. Cui, S. Wu, Q. Liu, W. Zhong, and L. Wang, “MV-RNN: A Multi-View Recurrent Neural Network for Sequential Recommendation.” arXiv, Nov. 20, 2018. doi: 10.48550/arXiv.1611.06668.
[10] J. Tang and K. Wang, “Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding.” arXiv, Sep. 19, 2018. doi: 10.48550/arXiv.1809.07426.
[11] W.-C. Kang and J. McAuley, “Self-Attentive Sequential Recommendation.” arXiv, Aug. 20, 2018. doi: 10.48550/arXiv.1808.09781.
[12] K. Zhou, H. Wang, W. X. Zhao, Y. Zhu, S. Wang, F. Zhang, Z. Wang, and J.-R. Wen, “S^3-Rec: Self-Supervised Learning for Sequential Recommendation with Mutual Information Maximization,” in Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Oct. 2020, pp. 1893–1902. doi: 10.1145/3340531.3411954.
[13] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer,” in Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing China: ACM, Nov. 2019, pp. 1441–1450. doi: 10.1145/3357384.3357895.
[14] L. Wu, S. Li, C.-J. Hsieh, and J. Sharpnack, “SSE-PT: Sequential Recommendation Via Personalized Transformer,” in Proceedings of the 14th ACM Conference on Recommender Systems, in RecSys ’20. New York, NY, USA: Association for Computing Machinery, Sep. 2020, pp. 328–337. doi: 10.1145/3383313.3412258.
[15] “A Systematic Study and Comprehensive Evaluation of ChatGPT on Benchmark Datasets,” ar5iv. Accessed: Mar. 06, 2024. [Online]. Available: https://ar5iv.labs.arxiv.org/html/2305.18486
[16] “Text Summarization Using Large Language Models: A Comparative Study of MPT-7b-instruct, Falcon-7b-instruct, and OpenAI Chat-GPT Models,” ar5iv. Accessed: Mar. 05, 2024. [Online]. Available: https://ar5iv.labs.arxiv.org/html/2310.10449
[17] “Benchmarking Large Language Models for News Summarization,” ar5iv. Accessed: Mar. 05, 2024. [Online]. Available: https://ar5iv.labs.arxiv.org/html/2301.13848
[18] T. Bujlow, V. Carela-Espanol, B.-R. Lee, and P. Barlet-Ros, “A Survey on Web Tracking: Mechanisms, Implications, and Defenses,” Proc. IEEE, vol. 105, no. 8, pp. 1476–1510, Aug. 2017, doi: 10.1109/JPROC.2016.2637878.
[19] J. Schwartz, “Giving Web a Memory Cost Its Users Privacy,” The New York Times, Sep. 04, 2001. Accessed: Mar. 10, 2024. [Online]. Available: https://www.nytimes.com/2001/09/04/business/giving-web-a-memory-cost-its-users-privacy.html
[20] H. Dao, J. Mazel, and K. Fukuda, “CNAME Cloaking-Based Tracking on the Web: Characterization, Detection, and Protection,” IEEE Trans. Netw. Serv. Manag., vol. 18, no. 3, pp. 3873–3888, Sep. 2021, doi: 10.1109/TNSM.2021.3072874.
[21] A. Randall, P. Snyder, A. Ukani, A. Snoeren, G. Voelker, S. Savage, and A. Schulman, “Trackers Bounce Back: Measuring Evasion of Partitioned Storage in the Wild.” arXiv, Jul. 12, 2022. Accessed: Mar. 10, 2024. [Online]. Available: http://arxiv.org/abs/2203.10188
[22] “Intelligent Tracking Prevention 2.2,” WebKit. Accessed: Mar. 10, 2024. [Online]. Available: https://webkit.org/blog/8828/intelligent-tracking-prevention-2-2/
[23] J. R. Mayer, “‘Any person... a pamphleteer:’ Internet Anonymity in the Age of Web 2.0”.
[24] P. Eckersley, “How Unique Is Your Web Browser?,” in Privacy Enhancing Technologies, vol. 6205, M. J. Atallah and N. J. Hopper, Eds., in Lecture Notes in Computer Science, vol. 6205. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–18. doi: 10.1007/978-3-642-14527-8_1.
[25] O. A. Abass and O. A. Arowolo, “Information Retrieval Models, Techniques and Applications,” vol. 2, no. 2.
[26] W. B. Croft, D. Metzler, and T. Strohman, “Search Engines Information Retrieval in Practice”.
[27] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620, Nov. 1975, doi: 10.1145/361219.361220.
[28] A. Bellogín and A. Said, “Information Retrieval and Recommender Systems,” in Data Science in Practice, A. Said and V. Torra, Eds., in Studies in Big Data. , Cham: Springer International Publishing, 2019, pp. 79–96. doi: 10.1007/978-3-319-97556-6_5.
[29] Ch. Aswani Kumar, M. Radvansky, and J. Annapurna, “Analysis of a Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for Information Retrieval,” Cybern. Inf. Technol., vol. 12, no. 1, pp. 34–48, Mar. 2012, doi: 10.2478/cait-2012-0003.
[30] A. A. Adebiyi, O. M. Ogunleye, M. Adebiyi, and J. O. OKesola, “A Comparative Analysis of TF-IDF, LSI and LDA in Semantic Information Retrieval Approach for Paper-Reviewer Assignment,” J. Eng. Appl. Sci., vol. 14, no. 10, Art. no. 10, 2019.
[31] M. W. Berry, S. T. Dumais, and G. W. O’Brien, “Using Linfeoarr Algebra Intelligent Information Retrieval”.
[32] B. Rosario, “Latent Semantic Indexing: An overview”.
[33] S. Dumais, “Latent Semantic Indexing (LSI) and TREC-2,” presented at the Text Retrieval Conference, 1993. Accessed: Oct. 07, 2023. [Online]. Available: https://www.semanticscholar.org/paper/Latent-Semantic-Indexing-(LSI)-and-TREC-2-Dumais/5dc31d2fa745ef07541666bdee815b38d6be1ea9
[34] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized Markov chains for next-basket recommendation,” in Proceedings of the 19th international conference on World wide web, in WWW ’10. New York, NY, USA: Association for Computing Machinery, Apr. 2010, pp. 811–820. doi: 10.1145/1772690.1772773.
[35] R. He and J. McAuley, “Fusing Similarity Models with Markov Chains for Sparse Sequential Recommendation.” arXiv, Sep. 28, 2016. doi: 10.48550/arXiv.1609.09152.
[36] W. Yin, K. Kann, M. Yu, and H. Schütze, “Comparative Study of CNN and RNN for Natural Language Processing.” arXiv, Feb. 07, 2017. Accessed: Sep. 29, 2023. [Online]. Available: http://arxiv.org/abs/1702.01923
[37] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan, “A Dynamic Recurrent Model for Next Basket Recommendation,” in Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, Pisa Italy: ACM, Jul. 2016, pp. 729–732. doi: 10.1145/2911451.2914683.
[38] F. Yuan, A. Karatzoglou, I. Arapakis, J. M. Jose, and X. He, “A Simple Convolutional Generative Network for Next Item Recommendation.” arXiv, Nov. 28, 2018. doi: 10.48550/arXiv.1808.05163.
[39] S. Wang, L. Hu, Y. Wang, L. Cao, Q. Z. Sheng, and M. Orgun, “Sequential Recommender Systems: Challenges, Progress and Prospects,” in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China: International Joint Conferences on Artificial Intelligence Organization, Aug. 2019, pp. 6332–6338. doi: 10.24963/ijcai.2019/883.
[40] S. Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath, “An Attentive Survey of Attention Models.” arXiv, Jul. 12, 2021. Accessed: Sep. 30, 2023. [Online]. Available: http://arxiv.org/abs/1904.02874
[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. ukasz Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2017. Accessed: Jun. 22, 2024. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
[42] P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive Representation Learning: A Framework and Review,” IEEE Access, vol. 8, pp. 193907–193934, 2020, doi: 10.1109/ACCESS.2020.3031549.
[43] “Deep Residual Learning for Image Recognition | IEEE Conference Publication | IEEE Xplore.” Accessed: Oct. 26, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/7780459
[44] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization.” arXiv, Jul. 21, 2016. doi: 10.48550/arXiv.1607.06450.
[45] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jan. 2014.
[46] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “Indexing by latent semantic analysis,” J. Am. Soc. Inf. Sci., vol. 41, no. 6, pp. 391–407, 1990, doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9.
[47] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR: Bayesian Personalized Ranking from Implicit Feedback,” 2009.
[48] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, “Image-based Recommendations on Styles and Substitutes.” arXiv, Jun. 15, 2015. Accessed: Nov. 11, 2023. [Online]. Available: http://arxiv.org/abs/1506.04757
[49] K. Zhou, H. Yu, W. X. Zhao, and J.-R. Wen, “Filter-enhanced MLP is All You Need for Sequential Recommendation,” arXiv.org. Accessed: Jun. 13, 2023. [Online]. Available: https://arxiv.org/abs/2202.13556v1
7
指導教授 陳彥良(Yen-Liang Chen) 審核日期 2024-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明