參考文獻 |
[1] B. F. Green, A. K. Wolf, C. Chomsky, and K. Laughery, “Baseball: an automatic question-answerer,” in Papers Presented at the May 9-11, 1961, Western Joint IRE-AIEE-ACM Computer Conference, 1961, pp. 219–224.
[2] W. A. Woods, "Progress in natural language understanding: an application to lunar geology." in Proceedings of the June 4-8, 1973, national computer conference and exposition, 1973, pp. 441-450.
[3] B. Katz, G. C. Borchardt, and S. Felshin, "Natural language annotations for question answering," in Proceedings of the 19th International Florida Artificial Intelligence Research Society Conference (FLAIRS), vol. 6, May 2006, pp. 303–306.
[4] B. Katz, J. Lin, and S. Felshin. "Annotating the world wide web." in MIT Artificial Intelligence Laboratory Research Abstracts (this volume), Sep. 2001.
[5] D. Ferrucci, E. Brown, J. ChuCarroll, J. Fan, D. Gondek, A. A. Kalyanpur, et al., "Building Watson: an overview of the DeepQA project," AI Magazine, vol. 31, no. 3, pp. 59–79, Sep. 2010.
[6] T. Joachims, “Text categorization with Support Vector Machines: learning with many relevant features,” in Machine Learning: ECML–98, vol. 1398, 1998, pp.137–142.
[7] U. Shaham, T. Zahavy, C. Caraballo, S. Mahajan, D. Massey, and H. Krumholz, "Learning to ask medical questions using reinforcement learning," in Proceedings of the Machine Learning for Healthcare Conference, Sep. 2020, pp. 2–26.
[8] S. Ruder, “An overview of multi-task learning in deep neural networks,” arXiv preprint, Jun. 15, 2017, arXiv:1706.05098. doi: 10.48550/arXiv.1706.05098.
[9] I. Sutskever,“Sequence to sequence learning with neural networks,” arXiv preprint, Dec. 14, 2014, arXiv:1409.3215. doi: 10.48550/arXiv.1409.3215.
[10] A. Vaswani, "Attention is all you need," in Advances in Neural Information Processing Systems (NeurIPS), 2017.
[11] M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun, and S. Fidler, "MovieQA: understanding stories in movies through question-answering," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4631–4640.
[12] O. Tafjord and P. Clark, "General-purpose question-answering with Macaw,"arXiv preprint, arXiv:2109.02593, 2021.
[13] Devlin, M.W. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” in Proceedings of NAACL-HLT, vol. 1, Jun 2019, pp. 1–2.
[14] T. B. Brown, "Language models are few-shot learners," arXiv preprint,” arXiv:2005.14165, 2020.
[15] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, "Improving language understanding by generative pre-training," [Online]. Available: https://www.openai.com/research/. [accessed: Mar.2024].
[16] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, et al., "GPT-4 technical report," arXiv preprint, arXiv:2303.08774, 2023.
[17] Gemini Team, R. Anil, S. Borgeaud, J.B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, et al., "Gemini: a family of highly capable multimodal models," arXiv preprint, arXiv:2312.11805, 2023.
[18] Anthropic, "The Claude 3 model family: Opus, Sonnet, Haiku," [Online]. Available: https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf. [accessed: Jul. 2024].
[19] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, et al., "Llama 2: open foundation and fine-tuned chat models," arXiv preprint, arXiv:2307.09288, 2023.
[20] T. Le Scao, A. Fan, C. Akiki, E. Pavlick, S. Ili?, D. Hesslow, R. Castagne, et al., "BLOOM: A 176B-parameter open-access multilingual language model,"arXiv preprint, arXiv: 2211.05100, 2023.
[21] H. Wang, L. Wang, Y. Du, L. Chen, J. Zhou, Y. Wang, and K. F. Wong, "A survey of the evolution of language model-based dialogue systems," arXiv preprint, arXiv:2311.16789, 2023.
[22] S. Yella, “AI-Driven content creation and personalization: revolutionizing digital marketing strategies,” Int. Res. J. Eng. Technol. (IRJET), vol. 11, Jul. 2024.
[23] O. Pavlova and A. Kuzmin, "Analysis of artificial intelligence-based systems for automated generation of digital content," 2024. [Online]. Available: https://elar.khmnu.edu.ua/handle/123456789/15916. [accessed: Jul. 2024].
[24] N. Bian, H. Lin, P. Liu, Y. Lu, C. Zhang, B. He, X. Han, and L. Sun, "Influence of external information on large language models mirrors social cognitive patterns," IEEE Trans. Comput. Social Syst.,2024.
[25] V. Adlakha, P. BehnamGhader, X. H. Lu, N. Meade, and S. Reddy, "Evaluating correctness and faithfulness of instruction-following models for question answering," arXiv preprint, arXiv:2307.16877, 2023.
[26] K. Sparck Jones, "A statistical interpretation of term specificity and its application in retrieval," J. Documentation, vol. 28, no. 1, pp. 11–21, 1972.
[27] S. Robertson and H. Zaragoza, “The probabilistic relevance framework: BM25 and beyond,” Foundations and TrendsR in Information Retrieval, vol. 3, no. 4, 2009, pp. 333–389.
[28] V. Karpukhin, B. O?uz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.T. Yih, "Dense passage retrieval for open-domain question answering", in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), vol.1, 2020. pp. 6769-6781.
[29] M. Xia, X. Zhang, C. Couturier, G. Zheng, S. Rajmohan, and V. Ruhle, "Hybrid retrieval-augmented generation for real-time composition assistance," arXiv preprint, arXiv:2308.04215, 2023.
[30] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kuttler, et al., “Retrieval-augmented generation for knowledge-intensive NLP tasks,” in Adv. Neural Inf. Process. Syst.,vol. 33, pp. 9459–9474, 2020.
[31] S. Jeong, J. Baek, S. Cho, S. J. Hwang, and J. C. Park, “Adaptive-RAG: learning to adapt retrieval-augmented large language models through question complexity,” arXiv preprint, arXiv:2403.14403, 2024.
[32] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, et al., "A survey of large language models," arXiv preprint, arXiv:2303.18223, 2023.
[33] P. Zhao, H. Zhang, Q. Yu, Z. Wang, Y. Geng, F. Fu, L. Yang, W. Zhang, et al., "Retrieval-augmented generation for AI-generated content: a survey," arXiv preprint, arXiv:2402.19473, 2024.
[34] Y. Mao, P. He, X. Liu, Y. Shen, J. Gao, J. Han, and W. Chen, "Generation-augmented retrieval for open-domain question answering," arXiv preprint, arXiv:2009.08553, 2020.
[35] S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann, P. Kambadur, D. Rosenberg, and G. Mann, "BloombergGPT: a large language model for finance," arXiv preprint, arXiv:2303.17564, 2023.
[36] R. Liu, C. Zenke, C. Liu, A. Holmes, P. Thornton, and D. J. Malan, "Teaching CS50 with AI: leveraging generative artificial intelligence in computer science education," in Proceedings of the 55th ACM Technical Symposium on Computer Science Education. vol. 1, pp. 750–756, 2024.
[37] Z. Xu, M. J. Cruz, M. Guevara, T. Wang, M. Deshpande, X. Wang, and Z. Li, “Retrieval-augmented generation with knowledge graphs for customer service question answering,” in Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2024, pp. 2905–2909.
[38] K. G. Yager, "Domain-specific chatbots for science using embeddings," Digital Discovery, vol. 2, no. 6, pp. 1850–1861, 2023.
[39] H. Zhang, Y. Liu, L. Dong, Y. Huang, Z. H. Ling, Y. Wang, L. Wang, et al., "MoVQA: a benchmark of versatile question-answering for long-form movie understanding," arXiv preprint, arXiv:2312.04817, 2023.
[40] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, "Language models are unsupervised multitask learners," OpenAI Blog, vol. 1, no. 8, p. 9, 2019.
[41] Y. Zhang, Y. Li, L. Cui, D. Cai, L. Liu, T. Fu, X. Huang, et al., "Siren′s song in the AI ocean: a survey on hallucination in large language models," arXiv preprint, arXiv:2309.01219, 2023.
[42] F. Liu, K. Lin, L. Li, J. Wang, Y. Yacoob, and L. Wang, "Mitigating hallucination in large multi-modal models via robust instruction tuning," in The Twelfth International Conference on Learning Representations, 2023.
[43] F. Shi, X. Chen, K. Misra, N. Scales, D. Dohan, E. H. Chi, N. Scharli, and D. Zhou, "Large language models can be easily distracted by irrelevant context," in International Conference on Machine Learning, pp. 31210–31227, 2023.
[44] H. Ye, T. Liu, A. Zhang, W. Hua, and W. Jia, "Cognitive mirage: A review of hallucinations in large language models," arXiv preprint, arXiv:2309.06794, 2023.
[45] J. Welser, J. W. Pitera, and C. Goldberg, "Future computing hardware for AI," in 2018 IEEE International Electron Devices Meeting (IEDM), pp. 1–3, 2018.
[46] J. Ye, X. Chen, N. Xu, C. Zu, Z. Shao, S. Liu, Y. Cui, et al., "A comprehensive capability analysis of GPT-3 and GPT-3.5 series models," arXiv preprint, arXiv:2303.10420, 2023. doi: 10.48550/arXiv.2303.10420.
[47] Menghani, "Efficient deep learning: a survey on making deep learning models smaller, faster, and better," ACM Comput. Surv., vol. 55, no. 12, pp. 1–37, 2023.
[48] S. G. Ayyamperumal and L. Ge, "Current state of LLM risks and AI guardrails," arXiv preprint, arXiv:2406.12934, 2024.
[49] A. Venkatesh, C. Khatri, A. Ram, F. Guo, R. Gabriel, A. Nagar, R. Prasad, et al., "On evaluating and comparing open domain dialog systems," arXiv preprint, arXiv.1801.03625, 2018.
[50] J. Casas, M. O. Tricot, O. Abou Khaled, E. Mugellini, and P. Cudre Mauroux, "Trends & methods in chatbot evaluation," in Companion Publication of the 2020 International Conference on Multimodal Interaction, pp. 280–286, 2020.
[51] R. S. Goodman, J. R. Patrinely, C. A. Stone, E. Zimmerman, R. R. Donald, S. S. Chang, S. T. Berkowitz, et al., "Accuracy and reliability of chatbot responses to physician questions," JAMA Network Open, vol. 6, no. 10, pp. e2336483–e2336483, 2023.
[52] N. Dziri, X. Lu, M. Sclar, X. L. Li, L. Jiang, B. Y. Lin, S. Welleck, et al., "Faith and fate: limits of transformers on compositionality," Adv. Neural Inf. Process. Syst., vol. 36, 2024.
[53] T. Cao, N. Raman, D. Dervovic, and C. Tan, "Characterizing multimodal long-form summarization: a case study on financial reports," arXiv preprint, arXiv:2404.06162, 2024
[54] E. C. Kuo, Y. T. Chen, and Y. H. Su," Assembling fragmented domain knowledge: a LLM-powered QA system for Taiwan cinema," in 2024 IEEE Congress on Evolutionary Computation (CEC), Jun. 2024, pp. 1–8 |