參考文獻 |
[1] Cheon, S., H. Lee, C. O. Kim, & S. H. Lee "Convolutional neural network for wafer surface defect classification and the detection of unknown defect class." IEEE Transactions on Semiconductor Manufacturing 32.2 ,2019,163-170.
[2] Chollet, F. "Xception: Deep learning with depthwise separable convolutions."Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 1251-1258.
[3] Dai, J., H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, & Y. Wei "Deformableconvolutional networks." Proceedings of the IEEE International Conference on Computer Vision. 2017, 764-773.
[4] He, K., X. Zhang, S. Ren, & J. Sun "Deep residual learning for image recognition."Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016, 770-778.
[5] Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, & H. Adam. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 ,2017.
[6] Hu, J., L. Shen, & G. Sun. "Squeeze-and-excitation networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 7132-7141.
[7] Jaderberg, M., K. Simonyan & A. Zisserman. "Spatial transformer networks."Advances in Neural Information Processing Systems 28 ,2015.
[8] Jin, C. H., H. J. Na, M. Piao, G. Pok, & K. H. Ryu. "A novel DBSCAN-based defect pattern detection and classification framework for wafer bin map." IEEE
Transactions on Semiconductor Manufacturing 32.3 ,2019,286-292.
[9] Krizhevsky, A., I. Sutskever, & G. E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in Neural Information Processing Systems 25 ,2012.
[10] Piao, M. C. H. Jin, J. Y. Lee, & J. Y. Byun. "Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features." IEEE
Transactions on Semiconductor Manufacturing 31.2 ,2018, 250-257.
[11] Saqlain, M., Q. Abbas, & J. Y. Lee. "A deep convolutional neural network for wafer defect identification on an imbalanced dataset in semiconductor manufacturing
processes." IEEE Transactions on Semiconductor Manufacturing 33.3 ,2020,436-444.
[12] Saqlain, M., B. Jargalsaikhan, & J. Y.Lee. "A voting ensemble classifier for wafermap defect patterns identification in semiconductor manufacturing." IEEE
Transactions on Semiconductor Manufacturing 32.2 ,2019, 171-182.
[13] Simonyan, K., & A. Zisserman. (2014). "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 ,2014.
[14] Wang, J., C. Xu, Z. Yang, J. Zhang, & X. Li. "Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition." IEEE Transactions on
Semiconductor Manufacturing 33.4 ,2020, 587-596.
[15] Wang, J., Z. Yang, J. Zhang, Q. Zhang, & W. T. K. Chien. "AdaBalGAN: An improved generative adversarial network with imbalanced learning for wafer defective pattern recognition." IEEE Transactions on Semiconductor Manufacturing 32.3 ,2019, 310-319.
[16] Wei, Y., & H. Wang. "Mixed-type wafer defect recognition with multi-scale information fusion transformer." IEEE Transactions on Semiconductor
Manufacturing 35.2 ,2022, 341-352.
[17] Woo, S., J. Park, J. Y. Lee, & I. S. Kweon "Cbam: Convolutional block attention module." Proceedings of the European Conference on Computer Vision (ECCV), 2018, 3-19.
[18] Wu, M. J., J. S. R. Jang, & J. L. Chen. "Wafer map failure pattern recognition and similarity ranking for large-scale data sets." IEEE Transactions on Semiconductor
Manufacturing 28.1 ,2014, 1-12.
[19] Zhang, X., & X. Wang. "Marn: multi-scale attention retinex network for low-light image enhancement." IEEE Access 9 ,2021, 50939-50948.
[20] Zhu, X., H. Hu, S. Lin, & J. Dai "Deformable convnets v2: More deformable, better results." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, 9308-9316. |