參考文獻 |
丁美彤(2020)。應用機器學習與空間之鄰域特徵於房價預測。世新大學財務金融學研究所。
王思青(2021)。影響臺北市住宅房價因素之探討。國立臺北大學統計學系。
王能立(2022)。利用機器學習預測新北市房價之研究。輔仁大學資訊管理學系。
余育芳(2024)。機器學習對不動產鑑價模型的應用-以台南市為例。國立中山大學國際資產管理研究所。
邱國祥(2020)。以多元線性迴歸與機器學習模型預估不動產價格-以台中市實價登錄為例。國立中興大學應用數學系所。
洪仁進(2021)。高齡族群對以房養老金融商品使用意願初探-以中臺灣地區為例。南開科技大學福祉科技與服務管理所。
梁宏富、陳奉瑤(2016)。不動產跨區購買之溢價分析。土地經濟年刊,(27),82-116。
許雅晶(2022)。房價預測模型-以新北市林口區為例。實踐大學資訊科技與管理學系。
陳玟寧(2022)。迴歸機器學習應用於房價預測—以臺北市實價登錄為例。明志科技大學工業工程與管理系。
廖思閔(2023)。應用機器學習於預測桃園市房價。元智大學工業工程與管理學系。
蔡沐樺(2019)。基於可解釋機器學習演算法的房屋價值評估-以高雄市為例。國立中山大學資訊管理學系研究所。
盧怡如(2017)。臺灣房屋所有權與房價對於創業的影響之研究。國立中山大學中國與亞太區域研究所。
Albawi, S., Abed Mohammed, T., & Alzawi, S. (2017). Understanding of a Convolutional Neural Network.
Anghel, I., & Hristea, A. M. (2015). Some Considerations Regarding the International Real Estate Market – Present and Future Predictions. Procedia Economics and Finance, 32, 1442-1452.
Baldominos, A., Blanco, I., Moreno, A. J., Iturrarte, R., Bernárdez, Ó., & Afonso, C. (2018). Identifying real estate opportunities using machine learning. Applied sciences, 8(11), 2321.
Bourassa, S. C., Hoesli, M., Merlin, L., & Renne, J. (2021). Big data, accessibility and urban house prices. Urban Studies, 58(15), 3176-3195.
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Carmona, P., Climent, F., & Momparler, A. (2019). Predicting failure in the US banking sector: An extreme gradient boosting approach. International Review of Economics & Finance, 61, 304-323.
Chen, K.-H., Ching, K.-E., Chuang, R. Y., Yang, M., & Chen, H.-C. (2020). Taiwan Semi-kinematic Reference Frame Based on Surface Deformation Model Derived from GNSS Data, 2003 to 2019. EGU General Assembly Conference Abstracts,
Cunningham, P., & Delany, S. J. (2021). K-nearest neighbour classifiers-a tutorial. ACM computing surveys (CSUR), 54(6), 1-25.
Dimoski, M., & Pettersen, M. (2020). Predicting housing prices with machine learning: a macroeconomic analysis of the Norwegian housing market
Dokmanic, I., Parhizkar, R., Ranieri, J., & Vetterli, M. (2015). Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Processing Magazine, 32(6), 12-30.
Feng, D.-C., Liu, Z.-T., Wang, X.-D., Chen, Y., Chang, J.-Q., Wei, D.-F., & Jiang, Z.-M. (2020). Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Construction and Building Materials, 230, 117000.
Heyman, A. V., & Sommervoll, D. E. (2019). House prices and relative location. Cities, 95, 102373.
Ho, W. K. O., Tang, B.-S., & Wong, S. W. (2020). Predicting property prices with machine learning algorithms. Journal of Property Research, 38(1), 48-70.
Hu, M., Su, Y., & Ye, W. (2019). Promoting or inhibiting: The role of housing price in entrepreneurship. Technological Forecasting and Social Change, 148, 119732.
Huston, J. H., & Spencer, R. W. (2016). The wealth effects of quantitative easing. Atlantic Economic Journal, 44, 471-486.
Ishak, A., Siregar, K., Ginting, R., & Afif, M. (2020). Orange software usage in data mining classification method on the dataset lenses. IOP Conference Series: Materials Science and Engineering,
Ja’afar, N. S., Mohamad, J., & Ismail, S. (2021). Machine learning for property price prediction and price valuation: a systematic literature review. Planning Malaysia, 19.
Jha, S. B., Babiceanu, R. F., Pandey, V., & Jha, R. K. (2020). Housing market prediction problem using different machine learning algorithms: A case study. arXiv preprint arXiv:2006.10092.
Jha, S. B., Pandey, V., Jha, R. K., & Babiceanu, R. F. (2020). Machine learning approaches to real estate market prediction problem: a case study. arXiv preprint arXiv:2008.09922.
Jiang, Z., & Shen, G. (2019). Prediction of house price based on the back propagation neural network in the keras deep learning framework. 2019 6th International Conference on Systems and Informatics (ICSAI),
Kurvinen, A. T., & Vihola, J. (2016). The impact of residential development on nearby housing prices. International Journal of Housing Markets and Analysis, 9(4), 671-690.
Lorenz, F., Willwersch, J., Cajias, M., & Fuerst, F. (2023). Interpretable machine learning for real estate market analysis. Real estate economics, 51(5), 1178-1208.
Martinez-Mazza, R. (2021). Causes and consequences of the housing affordability crisis.
Mohd, T., Jamil, N. S., Johari, N., Abdullah, L., & Masrom, S. (2020). An overview of real estate modelling techniques for house price prediction. Charting a Sustainable Future of ASEAN in Business and Social Sciences: Proceedings of the 3ʳᵈ International Conference on the Future of ASEAN (ICoFA) 2019—Volume 1,
Mora-Garcia, R.-T., Cespedes-Lopez, M.-F., & Perez-Sanchez, V. R. (2022). Housing Price Prediction Using Machine Learning Algorithms in COVID-19 Times. Land, 11(11), 2100.
Nunns, P. (2021). The causes and economic consequences of rising regional housing prices in New Zealand. New Zealand Economic Papers, 55(1), 66-104.
Phan, T. D. (2018). Housing price prediction using machine learning algorithms: The case of Melbourne city, Australia. 2018 International conference on machine learning and data engineering (iCMLDE),
Reisenbichler, A. (2021). The politics of quantitative easing and housing stimulus by the Federal Reserve and European Central Bank, 2008–2018. In Bricks in the Wall (pp. 190-210). Routledge.
Robnik-Šikonja, M., & Kononenko, I. (1997). An adaptation of Relief for attribute estimation in regression. Machine learning: Proceedings of the fourteenth international conference (ICML’97),
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., & Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804-818.
Ryczkowski, M. (2019). Money, credit, house prices and quantitative easing–the wavelet perspective from 1970 to 2016. Journal of Business Economics and Management, 20(3), 546-572.
Shkodina, I., Melnychenko, O., & Babenko, M. (2020). Quantitative easing policy and its impact on the global economy. Financial And Credit Activity-problems of theory and practice, 2, 513-521.
Suroyo, H. (2019). Penerapan Machine Learning dengan Aplikasi Orange Data Mining Untuk Menentukan Jenis Buah Mangga. Seminar Nasional Teknologi Komputer & Sains (SAINTEKS),
Tekin, M., & Sari, I. U. (2022). Real Estate Market Price Prediction Model of Istanbul. Real Estate Management and Valuation, 30(4), 1-16.
Thange, U., Shukla, V. K., Punhani, R., & Grobbelaar, W. (2021). Analyzing COVID-19 Dataset through Data Mining Tool “Orange”. 2021 2nd International Conference on Computation, Automation and Knowledge Management (ICCAKM),
Truong, Q., Nguyen, M., Dang, H., & Mei, B. (2020). Housing Price Prediction via Improved Machine Learning Techniques. Procedia Computer Science, 174, 433-442.
Wang, F., Zou, Y., Zhang, H., & Shi, H. (2019). House price prediction approach based on deep learning and ARIMA model. 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT),
Wang, P.-Y., Chen, C.-T., Su, J.-W., Wang, T.-Y., & Huang, S.-H. (2021). Deep learning model for house price prediction using heterogeneous data analysis along with joint self-attention mechanism. IEEE Access, 9, 55244-55259. |