參考文獻 |
1. 中文文獻
NCCC財團法人聯合信用卡處理中心NCCC (National Credit Card Center of R.O.C)公告 (2023.04.12). "疫情趨緩,景氣回溫,消費增加、信用卡詐欺也在增加." Retrieved 11.03, 2023,
Nilsonreport (2022). "Card Fraud Losses Reach $28.65 Billion."
VISAGroup (2023). "VISA secure-online-shopping." VISA Group. 2023,
YahooNews (2015). "反網路詐欺 銀行局出手." 2023,
NCCC公開文件 (2022.11.16). "聯卡中心規畫提供更優質的詐欺偵測服務."
工商時報. (2023.07.25). 兆豐銀阻截盜刷升級第一線 守住卡友額度高達96%. 黃有容. https://www.ctee.com.tw/news/20230725700986-439803
中華民國銀行公會. (2017.10.12). 辦理信用卡業務機構防制洗錢及打擊資恐注意事項範本. 中華民國銀行公會.
法務部調查局. (2017). 信用卡業務機構評估洗錢及資恐風險及訂定相關防制計畫指引 法務部調查局.
金融監督管理委員會. (2022.12). 金融資安行動方案2.0. 金融監督管理委員會.
政大數據分析社, N. D. A. (2023.04.26). 【Machine Learning實作】以信用卡盜刷與建立推薦引擎來看機器學習. medium. https://medium.com/政大數據分析社-nccu-data-analytics/machine-learning實作-以信用卡盜刷與建立推薦引擎來看機器學習-cbb6a7823bbd
財團法人聯合信用卡處理中心身份驗證平台. (2023.01). 信用卡輔助持卡人身分驗證平臺. 財團法人聯合信用卡處理中心. https://www.nccc.com.tw/wps/wcm/connect/zh/home/BusinessOperations/CardBusiness/CardVerificationPlatform
梁遠見, 陳., 譚靖學,胡玉健. (2023). RBRA : Risk Assessment for Online Credit Card Transactions. Yahoo TechPulse.
陳淑玲律師. (2003.05.02). 信用卡民事實務見解之研究. 陳淑玲律師.
2. 英文文獻
Afriyie, J. K., Tawiah, K., Pels, W. A., Addai-Henne, S., Dwamena, H. A., Owiredu, E. O., Ayeh, S. A., & Eshun, J. (2023). https://doi.org/10.1016/j.dajour.2023.100163
Ahmed, M., Mahmood, A. N., & Islam, M. R. (2016). A survey of anomaly detection techniques in financial domain. Future Generation Computer Systems, 55, 278-288.
Akkoç, S. (2012). An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data. European Journal of Operational Research, 222, 168–178. https://doi.org/10.1016/j.ejor.2012.04.009
Alfaiz, N. S., & Fati, S. M. (2022). Enhanced Credit Card Fraud Detection Model Using Machine Learning. Electronics, 11(4).
Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. (2011). Data mining for credit card fraud: A comparative study. Decision Support Systems, 50(3), 602-613. https://doi.org/https://doi.org/10.1016/j.dss.2010.08.008
Brain, S. (2013). Credit card fraud statistics. Retrieved from.
Carcillo, F., Le Borgne, Y.-A., Caelen, O., Kessaci, Y., Oblé, F., & Bontempi, G. (2021). Combining unsupervised and supervised learning in credit card fraud detection. Information Sciences, 557, 317-331. https://doi.org/https://doi.org/10.1016/j.ins.2019.05.042
Carminati, M., Caron, R., Maggi, F., Epifani, I., & Zanero, S. (2015). BankSealer: A decision support system for online banking fraud analysis and investigation. computers & security, 53, 175-186.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal Of Artificial Intelligence Research, 16, 321-357.
Chen, J., Tao, Y., Wang, H., & Chen, T. (2015). Big data based fraud risk management at Alibaba. The Journal of Finance and Data Science, 1(1), 1-10.
Cherkassky, V., & Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17(1), 113-126. https://doi.org/https://doi.org/10.1016/S0893-6080(03)00169-2
Crook, J. N., Edelman, D. B., & Thomas, L. C. (2007). Recent developments in consumer credit risk assessment. European Journal of Operational Research, 183(3), 1447-1465. https://doi.org/https://doi.org/10.1016/j.ejor.2006.09.100
Cybersixgill. (2023). STATE OF THE CYBERCRIME UNDERGROUND. Cybersixgill.
Dal Pozzolo, A., Caelen, O., Johnson, R. A., & Bontempi, G. (2015). Calibrating probability with undersampling for unbalanced classification. 2015 IEEE symposium series on computational intelligence,
Deepanath, C., & Prasad, K. (2019). IEEE-CIS fraud detection.
Dong, Q., Gong, S., & Zhu, X. (2017). Class rectification hard mining for imbalanced deep learning. Proceedings of the IEEE international conference on computer vision,
Forough, J., & Momtazi, S. (2021). Ensemble of deep sequential models for credit card fraud detection. Applied Soft Computing, 99, 106883. https://doi.org/https://doi.org/10.1016/j.asoc.2020.106883
Friedman, J. H. (1999.02.24). Greedy Function Approximation A Gradient Boosting Machine. https://jerryfriedman.su.domains/ftp/trebst.pdf
Fu, K., Cheng, D., Tu, Y., & Zhang, L. (2016, 2016//). Credit Card Fraud Detection Using Convolutional Neural Networks. Neural Information Processing, Cham.
Gao, J., Gong, L., Wang, J. Y., & Mo, Z. C. (2018, 16-19 Dec. 2018). Study on Unbalanced Binary Classification with Unknown Misclassification Costs. 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM),
Islam, M. A., Uddin, M. A., Aryal, S., & Stea, G. (2023). An ensemble learning approach for anomaly detection in credit card data with imbalanced and overlapped classes. Journal of Information Security and Applications, 78. https://doi.org/10.1016/j.jisa.2023.103618
Itoo, F., Meenakshi, & Singh, S. (2021). Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection. International Journal of Information Technology, 13(4), 1503-1511. https://doi.org/10.1007/s41870-020-00430-y
Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P.-E., He-Guelton, L., & Caelen, O. (2018). Sequence classification for credit-card fraud detection. Expert Systems with Applications, 100, 234-245. https://doi.org/https://doi.org/10.1016/j.eswa.2018.01.037
Karthik, V., Mishra, A., & Reddy, U. S. (2022). Credit card fraud detection by modelling behaviour pattern using hybrid ensemble model. Arabian Journal for Science and Engineering, 1-11.
Khatri, S., Arora, A., & Agrawal, A. P. (2020, 29-31 Jan. 2020). Supervised Machine Learning Algorithms for Credit Card Fraud Detection: A Comparison. 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence),
Kim, E., Lee, J., Shin, H., Yang, H., Cho, S., Nam, S.-k., Song, Y., Yoon, J.-a., & Kim, J.-i. (2019). Champion-challenger analysis for credit card fraud detection: Hybrid ensemble and deep learning. Expert Systems with Applications, 128, 214-224. https://doi.org/https://doi.org/10.1016/j.eswa.2019.03.042
Lee, N. (2021.02.01). Credit card fraud will increase due to the Covid pandemic, experts warn.
Malik, E. F., Khaw, K. W., Belaton, B., Wong, W. P., & Chew, X. (2022). Credit Card Fraud Detection Using a New Hybrid Machine Learning Architecture. Mathematics, 10(9).
Mathew, J., Pang, C. K., Luo, M., & Leong, W. H. (2017). Classification of imbalanced data by oversampling in kernel space of support vector machines. IEEE transactions on neural networks and learning systems, 29(9), 4065-4076.
Rameem Zahra, S., Ahsan Chishti, M., Iqbal Baba, A., & Wu, F. (2022). Detecting Covid-19 chaos driven phishing/malicious URL attacks by a fuzzy logic and data mining based intelligence system. Egyptian Informatics Journal, 23(2), 197-214. https://doi.org/10.1016/j.eij.2021.12.003
Rb, A., & Kr, S. K. (2021). Credit card fraud detection using artificial neural network. Global Transitions Proceedings, 2(1), 35-41. https://doi.org/10.1016/j.gltp.2021.01.006
Sahin, Y., Bulkan, S., & Duman, E. (2013). A cost-sensitive decision tree approach for fraud detection. Expert Systems with Applications, 40(15), 5916-5923. https://doi.org/https://doi.org/10.1016/j.eswa.2013.05.021
Tyagi, R., Ranjan, R., & Priya, S. (2021). Credit Card Fraud Detection Using Machine Learning Algorithms. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC),
Van Vlasselaer, V., Bravo, C., Caelen, O., Eliassi-Rad, T., Akoglu, L., Snoeck, M., & Baesens, B. (2015). APATE: A novel approach for automated credit card transaction fraud detection using network-based extensions. Decision Support Systems, 75, 38-48.
VISAGroup. (2023). VISA secure-online-shopping. https://www.visa.com.au/pay-with-visa/security/secure-online-shopping.html
Vuttipittayamongkol, P., Elyan, E., Petrovski, A., & Jayne, C. (2018, 2018//). Overlap-Based Undersampling for Improving Imbalanced Data Classification. Intelligent Data Engineering and Automated Learning – IDEAL 2018, Cham.
Zakaryazad, A., & Duman, E. (2016). A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing. Neurocomputing, 175, 121-131. https://doi.org/https://doi.org/10.1016/j.neucom.2015.10.042
Zareapoor, M., & Shamsolmoali, P. (2015). Application of Credit Card Fraud Detection: Based on Bagging Ensemble Classifier. Procedia Computer Science, 48, 679-685. https://doi.org/https://doi.org/10.1016/j.procs.2015.04.201
Zhang, Y.-F., Lu, H.-L., Lin, H.-F., Qiao, X.-C., & Zheng, H. (2022). The Optimized Anomaly Detection Models Based on an Approach of Dealing with Imbalanced Dataset for Credit Card Fraud Detection. Mobile Information Systems, 2022.
Zhu, X., Ao, X., Qin, Z., Chang, Y., Liu, Y., He, Q., & Li, J. (2021). Intelligent financial fraud detection practices in post-pandemic era. Innovation (Camb), 2(4), 100176. https://doi.org/10.1016/j.xinn.2021.100176
Akkoç, S. (2012). "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish credit card data." European Journal of Operational Research 222(1): 168-178.
Cherkassky, V. and Y. Ma (2004). "Practical selection of SVM parameters and noise estimation for SVM regression." Neural Networks 17(1): 113-126.
Crook, J. N., et al. (2007). "Recent developments in consumer credit risk assessment." European Journal of Operational Research 183(3): 1447-1465.
Cybersixgill (2020.01.27). "Dark Web Financial Fraud Spikes in Second Half of 2019: Over 76 million Credit Cards for Sale." from https://cybersixgill.com/news/articles/dark-web-financial-fraud-2019.
Lee, N. (2021.02.01). "Credit card fraud will increase due to the Covid pandemic, experts warn." from https://www.cnbc.com/2021/01/27/credit-card-
fraud-is-on-the-rise-due-to-covid-pandemic.html
LUNDUSKI, J. (2022.04.26). "2021 Annual Study: Identity Theft & Credit Card Fraud Has Exploded in Recent Years." Retrieved 11.02, 2023,
Alfaiz, N. S. and S. M. Fati (2022) Enhanced Credit Card Fraud Detection Model Using Machine Learning. Electronics 11, DOI: 10.3390/electronics11040662
Asha, R. and S. K. KR (2021). "Credit card fraud detection using artificial neural network." Global Transitions Proceedings 2(1): 35-41.
Ayorinde, K. (2021). A Methodology for Detecting Credit Card Fraud, Minnesota State University, Mankato.
Bhattacharyya, S., et al. (2011). "Data mining for credit card fraud: A comparative study." Decision Support Systems 50(3): 602-613.
Bontempi, G. (2021). Reproducible machine learning for credit card fraud detection-practical machine learning for credit card fraud detection-practical handbook foreword. May, May.
Breiman, L. (2001). "Random forests." Machine learning 45: 5-32.
Carcillo, F., et al. (2018). "Streaming active learning strategies for real-life credit card fraud detection: assessment and visualization." International Journal of Data Science and Analytics 5: 285-300.
Carcillo, F., et al. (2021). "Combining unsupervised and supervised learning in credit card fraud detection." Information Sciences 557: 317-331.
Carneiro, N., et al. (2017). "A data mining based system for credit-card fraud detection in e-tail." Decision Support Systems 95: 91-101.
Charleonnan, A. (2016). Credit card fraud detection using RUS and MRN algorithms. 2016 Management and Innovation Technology International Conference (MITicon), IEEE.
Dal Pozzolo, A., et al. (2014). "Learned lessons in credit card fraud detection from a practitioner perspective." Expert Systems with Applications 41(10): 4915-4928.
Deepanath, C. and K. Prasad (2019). "IEEE-CIS fraud detection."
Delamaire, L., et al. (2009). "Credit card fraud and detection techniques: a review." Banks and Bank systems 4(2): 57-68.
Dong, Q., et al. (2017). Class rectification hard mining for imbalanced deep learning. Proceedings of the IEEE international conference on computer vision.
Dornadula, V. N. and S. Geetha (2019). "Credit Card Fraud Detection using Machine Learning Algorithms." Procedia Computer Science 165: 631-641.
Forough, J. and S. Momtazi (2021). "Ensemble of deep sequential models for credit card fraud detection." Applied Soft Computing 99: 106883.
Fu, K., et al. (2016). Credit Card Fraud Detection Using Convolutional Neural Networks. Neural Information Processing, Cham, Springer International Publishing.
Gao, J., et al. (2018). Study on Unbalanced Binary Classification with Unknown Misclassification Costs. 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM).
Guanjun, L., et al. (2018). "Random Forest for Credit Card Fraud." IEEE Access.
Itoo, F., et al. (2021). "Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection." International Journal of Information Technology 13(4): 1503-1511.
Jurgovsky, J., et al. (2018). "Sequence classification for credit-card fraud detection." Expert Systems with Applications 100: 234-245.
Kalid, S. N., et al. (2020). "A Multiple Classifiers System for Anomaly Detection in Credit Card Data With Unbalanced and Overlapped Classes." IEEE Access 8: 28210-28221.
Karthik, V., et al. (2022). "Credit card fraud detection by modelling behaviour pattern using hybrid ensemble model." Arabian Journal for Science and Engineering: 1-11.
Khatri, S., et al. (2020). Supervised Machine Learning Algorithms for Credit Card Fraud Detection: A Comparison. 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence).
Kim, E., et al. (2019). "Champion-challenger analysis for credit card fraud detection: Hybrid ensemble and deep learning." Expert Systems with Applications 128: 214-224.
Liaw, A. and M. Wiener (2002). "Classification and regression by randomForest." R news 2(3): 18-22.
Malik, E. F., et al. (2022) Credit Card Fraud Detection Using a New Hybrid Machine Learning Architecture. Mathematics 10, DOI: 10.3390/math10091480
Mathew, J., et al. (2017). "Classification of imbalanced data by oversampling in kernel space of support vector machines." IEEE transactions on neural networks and learning systems 29(9): 4065-4076.
Michael, J. and S. L. Gordon (1997). "Data mining technique for marketing, sales and customer support." New York: John Wiley&Sons INC 445: 6.
Olowookere, T. A. and O. S. Adewale (2020). "A framework for detecting credit card fraud with cost-sensitive meta-learning ensemble approach." Scientific African 8: e00464.
Ram, S., et al. (2018). "Devanagri character recognition model using deep convolution neural network." Journal of Statistics and Management Systems 21(4): 593-599.
Randhawa, K., et al. (2018). "Credit Card Fraud Detection Using AdaBoost and Majority Voting." IEEE Access 6: 14277-14284.
Rout, P. K. and B. K. Behera (2021). Goat and Sheep Farming. Sustainability in Ruminant Livestock : Management and Marketing. P. K. Rout and B. K. Behera. Singapore, Springer Singapore: 33-76.
Sahin, Y., et al. (2013). "A cost-sensitive decision tree approach for fraud detection." Expert Systems with Applications 40(15): 5916-5923.
Save, P., et al. (2017). "A novel idea for credit card fraud detection using decision tree." International Journal of Computer Applications 161(13).
Seera, M., et al. (2021). "An intelligent payment card fraud detection system." Annals of operations research: 1-23.
Singh, P. (2017). Comparative study of individual and ensemble methods of classification for credit scoring. 2017 International Conference on Inventive Computing and Informatics (ICICI).
Sohony, I., et al. (2018). Ensemble learning for credit card fraud detection. Proceedings of the ACM India joint international conference on data science and management of data.
Tabachnick, B. G., et al. (2013). Using multivariate statistics, pearson Boston, MA.
Venkatesh, A. and S. G. Jacob (2016). "Prediction of credit-card defaulters: a comparative study on performance of classifiers." International Journal of Computer Applications 145(7).
Vuttipittayamongkol, P., et al. (2018). Overlap-Based Undersampling for Improving Imbalanced Data Classification. Intelligent Data Engineering and Automated Learning – IDEAL 2018, Cham, Springer International Publishing.
Xenopoulos, P. (2017). Introducing DeepBalance: Random deep belief network ensembles to address class imbalance. 2017 IEEE International Conference on Big Data (Big Data), IEEE.
Xia, Y., et al. (2017). "A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring." Expert Systems with Applications 78: 225-241.
Zakaryazad, A. and E. Duman (2016). "A profit-driven Artificial Neural Network (ANN) with applications to fraud detection and direct marketing." Neurocomputing 175: 121-131.
Zareapoor, M. and P. Shamsolmoali (2015). "Application of Credit Card Fraud Detection: Based on Bagging Ensemble Classifier." Procedia Computer Science 48: 679-685.
Zhang, X., et al. (2021). "HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture." Information Sciences 557: 302-316.
Zhang, Y.-F., et al. (2022). "The Optimized Anomaly Detection Models Based on an Approach of Dealing with Imbalanced Dataset for Credit Card Fraud Detection." Mobile Information Systems 2022.
Tyagi, R., et al. (2021). Credit Card Fraud Detection Using Machine Learning Algorithms. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), IEEE.
Vuttipittayamongkol, P., et al. (2018). Overlap-Based Undersampling for Improving Imbalanced Data Classification. Intelligent Data Engineering and Automated Learning – IDEAL 2018, Cham, Springer International Publishing. |