參考文獻 |
[1] Yuan J.H. et al., "Ferroelectricity in HfO2 from a chemical
perspective." arXiv preprint arXiv:2201.00210 (2022).
[2] Shaoping Li et al., 1997 Jpn. J. Appl. Phys. 36 5169.
[3] Sanghun Jeon et al., “A method of controlling the imprint effect in hafnia
ferroelectric device.” Appl. Phys. Lett. 122, 022901 (2023)
[4] X. J. Lou, “Polarization fatigue in ferroelectric thin films and related materials
.” J. Appl. Phys. 105, 024101 (2009)
[5] T. Mittmann, M. Materano, S. . -C. Chang, I. Karpov, T. Mikolajick and U.
Schroeder, "Impact of Oxygen Vacancy Content in Ferroelectric HZO films on the
Device Performance," 2020 IEEE International Electron Devices Meeting (IEDM), San
Francisco, CA, USA, 2020, pp. 18.4.1-18.4.4
[6] Liu, et al.,” Analog content-addressable memory from complementary FeFETs
” 2024, Device 2, 100218.
[7] Dawber, M., Rabe, K. M., & Scott, J. F. (2005). Physics of thin-film ferroelectric
oxides. Reviews of Modern Physics, 77(4), 1083-1130.
[8] Tyunina, M., & Savinov, M. (2012). Size effects in ferroelectric films: Curie
temperature. Journal of Physics D: Applied Physics, 45(45), 455305.]
[9] Scott, J. F. (2007). Applications of modern ferroelectrics. Science, 315(5814), 954-
959.
[10] Bratkovsky, A. M., & Levanyuk, A. P. (2000). Critical thickness in ferroelectric
thin films. Physical Review Letters, 84(14), 3177-3180.
[11] Dawber, M., Rabe, K. M., & Scott, J. F. (2005). Physics of thin-film ferroelectric
oxides. Reviews of Modern Physics, 77(4), 1083-1130.
[12] Tybell, T., Ahn, C. H., & Triscone, J. M. (1999). Ferroelectricity in thin perovskite
films. Applied Physics Letters, 75(6), 856-858.
[13] Waser, R., & Aono, M. (2007). Nanoionics-based resistive switching memories.
Nature Materials, 6(11), 833-840.
[14] Lee, H. N., Christen, H. M., Chisholm, M. F., Rouleau, C. M., & Lowndes, D. H.
(2005). Strong polarization enhancement in asymmetric three-component ferroelectric
superlattices. Nature, 433(7024), 395-399.
[15] Garcia, V., & Bibes, M. (2014). Ferroelectric tunnel junctions for information
storage and processing. Nature Communications, 5, 4289.
[16] Ghosez, P., & Junquera, J. (2005). First-principles modeling of ferroelectric oxide
nanostructures. Journal of Computational Chemistry, 27(2), 287-293.
[17] Lou, X. J. (2009). Polarization fatigue in ferroelectric thin films and related
materials. Journal of Applied Physics, 105(2), 024101.
[18] Kohlstedt, H., Pertsev, N. A., Rodriguez Contreras, J., & Waser, R. (2005). The
fatigue of ferroelectric and doped antiferroelectric thin films. Applied Physics Letters,
87(8), 082902.
[19] Dawber, M., & Scott, J. F. (2000). A model for fatigue-free ferroelectric capacitors:
Graded layers. Journal of Physics: Condensed Matter, 12(11), L199-L203.
[20] Seidel, J., Martin, L. W., He, Q., et al. (2009). Conduction at domain walls in oxide
multiferroics. Nature Materials, 8(3), 229-234.
[21] Kohlstedt, H., Pertsev, N. A., Rodriguez Contreras, J., & Waser, R. (2005). The
fatigue of ferroelectric and doped antiferroelectric thin films. Applied Physics Letters,
87(8), 082902.
[22] Junquera, J., & Ghosez, P. (2003). Critical thickness for ferroelectricity in
perovskite ultrathin films. Nature, 422(6931), 506-509.
[23] Nagarajan, V., Roytburd, A., Stanishevsky, A., et al. (2003). Dynamics of
ferroelastic domains in ferroelectric thin films. Nature Materials, 2(1), 43-47.
[24] Lee, D., Baek, S. H., Folkman, C. M., et al. (2010). Polarity enhancement in
ultrathin ferroelectric BaTiO? films. Advanced Materials, 22(11), 2336-2340.
[25] Muller, J., Schroder, U., Boscke, T. S., et al. (2012). Ferroelectricity in simple
binary ZrO? and HfO?. Nano Letters, 12(8), 4318-4323.
[26] Park, M. H., Lee, Y. H., Kim, H. J., et al. (2015). Ferroelectricity and
antiferroelectricity of doped thin HfO?-based films. Advanced Materials, 27(11), 1811-
1831.
[27] Starschich, S., & Bottger, U. (2016). Evidence for oxygen vacancy movement
during wake-up in ferroelectric hafnium oxide. Applied Physics Letters, 108(3), 032903.
[28] Zhou, D., & Cao, F. (2016). Evolution of ferroelectric HfO? in ultrathin region
down to 3 nm. Journal of Applied Physics, 120(4), 044102.
[29] Mart, C., Chernikova, A. G., & Markeev, A. M. (2020). Engineering of
ferroelectric Hf0.5Zr0.5O2 thin films for next generation non-volatile memory.
Nanoscale, 12(3), 2018-2026.
[30] Kunneth, C., & Kersch, A. (2016). Ab initio modeling of ferroelectric hafnium
oxide. Journal of Applied Physics, 119(13), 134109.
[31] Zane, F., Narlikar, G., Basu, A., et al. (2003). CoolCAMs: Power-efficient TCAMs
for forwarding engines. IEEE INFOCOM 2003. Twenty-second Annual Joint
Conference of the IEEE Computer and Communications Societies, 42-52.
[32] Chao, H. J. (2001). Next generation routers. Proceedings of the IEEE, 89(11),
2041-2054.
[33] Yang, W., Lee, C., & Lin, S. (2018). Design of a multi-bit content addressable memory (CAM) using low-power techniques. Microelectronics Journal, 73, 1-7.
[34] Pagiamtzis, K., & Sheikholeslami, A. (2006). Content-addressable memory (CAM)
circuits and architectures: A tutorial and survey. IEEE Journal of Solid-State Circuits,
41(3), 712-727.
[35] Spitznagel, M., Taylor, A., & Turner, J. (2003). Packet classification using
extended TCAMs. Proceedings of the 11th IEEE International Conference on Network
Protocols, 120-131.
[36] Ryu, K., Lee, S., & Kim, J. (2011). A 256×144 TCAM architecture using a
segmented match line to reduce power consumption. IEEE Journal of Solid-State
Circuits
[37] 王聖閔, “Research on Multifunctional Metal Gate and HfO2/ZrO2 Superlattice
Stacks in Ferroelectric Transistors for High-Temperature Data Retention, Multi-Level
Cell Storage, and Long Endurance” , 國立中央大學,碩士論文, 2023
[38] M. Pe?i? et al., “Physical Mechanisms behind the Field-Cycling Behavior of
HfO2-Based Ferroelectric Capacitors”Adv. Funct. Mater., 26, 4601 (2016)
[39] V. A. Isupov, “Ferroelectric and antiferroelectric perovskites Pb (B′0.5B′′0.5)
O3.” Ferroelectrics, vol. 289, no. 1, pp. 131-195., 2003.
[40] Nitin Dahad, Memory Startup Brings FeFET Solutions to NVM Market.
[41] Zhuravlev, M. Y., et al. (2005). Ferroelectric tunnel junctions: The effect of
polarization reversal on the tunneling current. Physical Review Letters, 94(24),
246802.
[42] Garcia, V., & Bibes, M. (2014). Ferroelectric tunnel junctions for information
storage and processing. Nature Communications, 5, 4289.
[43] Chanthbouala, A., et al. (2012). A ferroelectric memristor. Nature Materials,
11(10), 860-864.
[44] Pantel, D., et al. (2012). Reversible electrical switching of spin polarization in
multiferroic tunnel junctions. Nature Materials, 11(4), 289-293.
[45] T. Schenk and S. Mueller, "A New Generation of Memory Devices Enabled by
Ferroelectric Hafnia and Zirconia," 2021 IEEE International Symposium on
Applications of Ferroelectrics (ISAF), Sydney, Australia, 2021, pp. 1-11, doi:
10.1109/ISAF51943.2021.9477377.
[46] Bong Ho Kim, et al., Oxygen Scavenging in HfZrOx-Based n/p-FeFETs for
Switching Voltage Scaling and Endurance/Retention Improvement, “Advanced
Eletronic Materials” ,2023
[47] E. H. Nicollian and A. Goetzberger, “The si-sio, interface–electrical properties as
determined by the metal-insulator-silicon conductance technique,” Bell Syst. Tech. J.,
vol. 46, no. 6, pp. 1033–1055, Jul./Aug. 1967
[48] Y. Qu, J. Li, M. Si, X. Lyu and P. D. Ye, "Quantitative Characterization of Interface Traps in Ferroelectric/Dielectric Stack Using Conductance Method,"
in IEEE Transactions on Electron Devices, vol. 67, no. 12, pp. 5315-5321, Dec. 2020,
doi: 10.1109/TED.2020.3034564.
[49] M.-K. Kim, et al., “Ferroelectric Analog Synaptic Transistors”Nano Letters,
2019.
[50] Y. Xu et al., "Robust Breakdown Reliability and Improved Endurance in
Hf0.5Zr0.5O2 Ferroelectric Using Grain Boundary Interruption," in IEEE
Transactions on Electron Devices, vol. 69, no. 1, pp. 430-433, Jan. 2022
[51]陳昱廷, “Development and Reliability Analysis of 3 Bits-Per-Cell Ferroelectric
FETs Achieving Immediate Read-After-Write and High Endurance (>1012 Cycles),
Multi-Level Cell Storage, and Long Endurance” , 國立中央大學,碩士論文, 2024
[52] D.J.J. Loy et al., “Conduction Mechanisms on High Retention Annealed MgObased Resistive Switching Memory Devices”, Sci. Rep 8, 14774, OCTOBER 2018
[53] Kukli, K., et al., Aluminum Oxide Thin Films for Electronic Applications, Thin
Solid Films, 2001.
[54] Zhu, X., et al., Improved Interface Properties of HfO2-Based FeFETs Using
Al2O3 as Buffer Layer, IEEE Transactions on Electron Devices, 2019.
[55] Lee, H. J., et al., Impact of Al2O3 Layer on Ferroelectric Properties in FeFETs,
Journal of Applied Physics, 2018.
[56] Chen, W., et al., Reduction of Leakage Current in HfO2-Based FeFET Using
Al2O3 Interlayer, Microelectronics Journal, 2020.
[57] Suh, Y. K., et al., Thickness Optimization of Al2O3 in FeFETs for Enhanced
Memory Performance, IEEE Electron Device Letters, 2020.
[58] K. Chen et al., “Excellent reliability of ferroelectric HfZrOx free from wake-up
and fatigue effects by NH3 plasma treatment,” Symposium on VLSI Circuits, pp. T84-
T85, 2017.
[59] Jihoon Kim et al., “A study on H2 plasma treatment effect on a-IGZO thin film
transistor,” Journal of Materials Research, 27, 2318–2325, 2012.
[60] K. Toprasertpong, M. Takenaka and S. Takagi, "Direct Observation of Interface
Charge Behaviors in FeFET by Quasi-Static Split C-V and Hall Techniques:
Revealing FeFET Operation," 2019 IEEE International Electron Devices Meeting
(IEDM), San Francisco, CA, USA, 2019, pp. 23.7.1-23.7.4
[61] C. -Y. Liao et al., "Multibit Ferroelectric FET Based on Nonidentical Double
HfZrO2 for High-Density Nonvolatile Memory," in IEEE Electron Device Letters, vol.
42, no. 4, pp. 617-620, April 2021, doi: 10.1109/LED.2021.3060589.
[62] Mulaosmanovic, Halid, et al. "Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors." ACS applied materials & interfaces 9.4
(2017): 3792-3798.
[63] Mulaosmanovic, Halid, et al. "Interplay between switching and retention in HfO
2-based ferroelectric FETs." IEEE Transactions on Electron Devices 67.8 (2020): 3466-
3471.
[64] K. Ni et al., "A Novel Ferroelectric Superlattice Based Multi-Level Cell NonVolatile Memory," 2019 IEEE International Electron Devices Meeting (IEDM), San
Francisco, CA, USA, 2019, pp. 28.8.128.8.4,doi:10.1109/IEDM19573.2019.8993670.
[65] T. S. Boscke et al., “Ferroelectricity in hafnium oxide thin films” , Appl. Phys.
Lett 99, 102903, SEPTEMBER 2011
[66] K. Ni et al., "SoC Logic Compatible Multi-Bit FeMFET Weight Cell for
Neuromorphic Applications," 2018 IEEE International Electron Devices Meeting
(IEDM), San Francisco, CA, USA, 2018, pp. 13.2.1-13.2.4, doi:
10.1109/IEDM.2018.8614496.
[67] W. Xu et al., "A Novel Ferroelectric FET Based Universal Content Addressable
Memory With Reconfigurability for Area- and Energy-Efficient In-MemorySearching System," in IEEE Electron Device Letters, vol. 45, no. 7, pp. 1345-1348,
July 2024, doi: 10.1109/LED.2024.3406042
[68] H. Xu, J. Yang, T. Kampfe, C. Zhuo, K. Ni and X. Yin, "On the Challenges and
Design Mitigations of Single Transistor Ferroelectric Content Addressable Memory,"
in IEEE Electron Device Letters, vol. 45, no. 1, pp. 112-115, Jan. 2024, doi:
10.1109/LED.2023.3334756.
[69] A. Sunilan, et al., TechRxiv. August 22, 2023.
[70] S. Salahuddin, A. Tan, S. Cheema, N. Shanker, M. Hoffmann and J. . -H. Bae,
"FeFETs for Near-Memory and In-Memory Compute," 2021 IEEE International
Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2021, pp. 19.4.1-19.4.4,
doi: 10.1109/IEDM19574.2021.9720622.
[71] S. Dutta et al., "Monolithic 3D Integration of High Endurance Multi-Bit
Ferroelectric FET for Accelerating Compute-In-Memory," 2020 IEEE International
Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 36.4.1-36.4.4,
doi: 10.1109/IEDM13553.2020.9371974.
[72]X. Yin et al., "FeCAM: A Universal Compact Digital and Analog Content
Addressable Memory Using Ferroelectric," in IEEE Transactions on Electron Devices,
vol. 67, no. 7, pp. 2785-2792, July 2020
[73]K. Pagiamtzis and A. Sheikholeslami, "Content-addressable memory (CAM) circuits and architectures: a tutorial and survey," in IEEE Journal of Solid-State
Circuits, vol. 41, no. 3, pp. 712-727, March 2006 |