博碩士論文 111521001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.138.124.167
姓名 黃子容(Zi-Rong Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 透過氫電漿處理提升 FeFET 之耐久性、儲 存密度與讀取速度並改善 FeCAM 設計中的 穩定性與漢明距離
(Enhancing FeFET Endurance、Storage Density、Read Speed through H2 Plasma Treatment, and Improving Stability and Hamming Distance in FeCAM Designs)
相關論文
★ 可實現高溫資料保留、多層儲存單元與高耐久度鐵電電晶體之多功能閘極與HfO2/ZrO2超晶格堆疊研究★ H2電漿處理之超薄IGZO種子層的低電壓 鐵電電容器以實現30ns/3V讀寫速度且高儲存密度之每單元3位元FeNAND快閃記憶體
★ 實現瞬時讀取且長耐久性(>10^12次)之三位 元鐵電場效應電晶體製程技術與可靠度分析★ 應力工程和表面能對p型氧化錫(SnO)寬能隙相穩定化的影響
★ 高熱穩定性、長效耐久性 (>1011次 )且具瞬時讀取之多功能閘極 (TiN/Mo/TiOxNy/SL-HZO)層狀堆疊鐵電記憶體技術開發★ 超晶格HfO2/ZrO2結構可靠性及In2O3與TeO2通道材料遷移率的第一原理計算研究
★ 基於氮化鍺碲碳非砷化物選擇器的高熱穩定性、低電壓變異性及高循環耐久性 (>1011) 的物理分析★ 實現全後段製程相容性、基於IGZO雙電晶體及鐵電電容器之非揮發性記憶體
★ 可實現 2.3V大記憶視窗(每單元3位元)、可立即讀取並具有????^??次寫入之鐵電電晶體及其在機器學習之高精確度研究★ 高速、低能耗、微型1T-PMOS TRNG陣列的設計和特性描述
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本次實驗中我們提出了一種利用氫電漿處理元件的方法,此方法提升了元
件的穩定性、操作速度和可靠性。我們透過 XPS、TEM 等物性分析鐵電薄膜與各元件的材料差異,並針對氫電漿處理前後元件的 ION/IOFF 比、極化切換速度、耐久性、數據保留性、多層儲存單元操作等多項電性數據進行比較分析。此外,我們還透過將 1N-1P 的兩個鐵電電晶體組合成一個 FeCAM cell,並同樣對其進行電性及物性分析。透過多項分析,我們發現在 FeFET 方面氫電漿處理後介面缺陷密度由 8.04 × 1012????/????2 降低到了 5.5 × 1012????/????2,這就使得元件 ION/IOFF 比可以達到 8 個級距,比原本高出了兩個級距,漏電電流也明顯小於處理前 1~2 個級距。並且透過 XPS 發現 HZO 薄膜中的氧缺陷濃度降低了將近 50-60%,這將改善由氧空缺引起的電荷捕捉效應,可使元件 wake up free,並將耐久性提高到超過 1011次。此外,氫電漿處理降低了 pinning field,加速了極化切換,並減少了印痕效應。改善了多層儲存單元的操作,由原本 TLC 提升至 QLC,並且在變異性改善方面提升了 46%。透過將測試脈波、Gmax/Gmin、狀態數等參數輸入 MNIST 系統中,其手寫辨識度達到了 91.1%。而 FeCAM 方面氫電漿處理後的 VOFF 的標準差從64mV 降到 38mV,並且 MHD 甚至是原本的 6 倍,此外,Arrhenius 方程擬合結果顯示,該 FeCAM 在 99.5°C 下仍能保持十年的數據。
摘要(英) In this study, we proposed a method utilizing hydrogen plasma treatment to enhance the stability, operating speed, and reliability of devices. We performed material analysis on ferroelectric thin films and various components using XPS, TEM, and other techniques, comparing the electrical characteristics of the devices before and after hydrogen plasma treatment, including the ION/IOFF ratio, polarization switching speed, endurance, data retention, and multi-level cell (MLC) operation. Additionally, we combined two FeFETs (1N-1P) to form a FeCAM cell, conducting both electrical and material analysis.Through various analyses, we found that the interface trap density in FeFETs was reduced from 8.04 × 1012 μC/cm2 to 5.5 × 1012 μC/cm2 after hydrogen plasma treatment. This allowed the device′s ION/IOFF ratio to reach eight levels, which is two levels higher than before, with significantly reduced leakage current (1-2 levels lower). XPS also revealed that the oxygen vacancy concentration in the HZO film decreased by nearly 50-60%, improving the charge trapping effect caused by oxygen vacancies. This resulted in wake-up free devices and extended endurance to over 1011 cycles. Furthermore, hydrogen plasma treatment reduced the pinning field, accelerated polarization switching, and minimized imprint effects. It also enhanced MLC operation from TLC to QLC, with a 46% improvement in variability.By inputting parameters such as test pulses, Gmax/Gmin, and the number of states into the MNIST system, recognition accuracy reached 91.1%. Regarding FeCAM, after hydrogen plasma treatment, the standard deviation of VOFF was reduced from 64mV to 38mV, and the maximum Hamming distance (MHD) was six times greater than before. Additionally, the Arrhenius equation fitting results showed that the FeCAM could retain data for ten years at 99.5°C.
關鍵字(中) ★ 鐵電記憶體
★ 內容可定址記憶體
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 XII
第一章 序論與文獻回顧 1
1.1 新興記憶體 1
1.1.1 馮·諾伊曼架構的侷限性 1
1.1.2 新興記憶體技術的發展 1
1.1.3 記憶體中的邏輯運算 2
1.1.4 記憶體與 LiM 技術的結合 2
1.2 鐵電材料的特性與發展 3
1.3 鐵電材料的極化機制 4
1.4 HZO 鐵電材料 5
1.4.1 鐵電材料的基本特性 6
1.4.2 HZO 的相變機制 6
1.4.3 HZO 在非揮發性存儲器中的應用 7
1.4.4 HZO 的兼容性和製造工藝優勢 7
1.4.5 HZO 的未來發展方向 8
1.5 鐵電記憶體 8
1.5.1 鐵電隨機存取記憶體 Ferroelectric Random Access Memory (FeRAM)8
1.5.2 鐵電場效電晶體 Ferroelectric Field Effect Transistor (FeFET)9
1.5.3 鐵電隧道結構 Ferroelectric Tunnel Junction (FTJ)10
1.6 鐵電材料面臨的問題與挑戰 11
1.6.1 去極化電場(Depolarization Field)11
1.6.2 尺寸效應(Size Effect) 13
1.6.3 印痕效應(Imprint Effect) 14
1.6.4 疲勞效應(Fatigue Effect)15
1.6.5 氧空缺(Oxygen Vacancy) 17
1.7 內容可定址記憶體 Content Addressable Memory(CAM) 18
1.7.1 CAM 的基本概念 18
1.7.2 CAM 的應用 19
1.7.3 CAM 的挑戰與優化 19
1.8 多位元內容可定址記憶體 Multi-bit Content Addressable Memory(Multi-bit
CAM) 20
1.8.1 Multi-bit CAM 的基本概念 20
1.8.2 Multi-bit CAM 的優勢 20
1.8.3 Multi-bit CAM 的挑戰 21
1.9 傳統 CAM 與 FeCAM 的比較 21
第二章 FeFET 及 FeCAM 電性量測 26
2.1 FeFET ID-VG量測 26
2.2 FeFET 切換速度量測 27
2.3 FeFET 耐久性量測 29
2.4 FeFET QSCV(quasi-static split-CV)量測 31
2.5 FeFET 讀取延遲量測 32
2.6 FeFET 介面缺陷密度(Dit)量測 33
2.7 FeFET 電導值量測 35
2.8 FeFET Multi-level 36
2.9 FeFET 擊穿電場(breakdown field)量測 37
2.10 FeFET 資料保留度量測(retention)量測 38
2.11 FeCAM Matching Line(ML)current 量測 40
第三章 元件製備流程42
3.1 製備流程 42
第四章 實驗結果與討論 46
4.1 FeFET 結果與討論 46
4.1.1 超晶格層狀推疊 HZO 46
4.1.2 介電層 Al2O3 46
4.1.3 遠程氫電漿處理對材料的影響47
4.1.4 ID-VG、漏電流與崩潰電場分析48
4.1.5 QSCV 分析49
4.1.6 電晶體的讀取延遲52
4.1.7 操作速度53
4.1.8 介面陷阱密度55
4.1.9 FeFET 的多位元操作56
4.1.10 FeFET 應用於類神經網路59
4.2 FeCAM 結果與討論63
4.2.1 FeCAM 的 Macthing Line (ML)電流 63
4.2.2 漢明距離(Hamming Distance,HD)65
第五章 結論70
參考文獻71
參考文獻 [1] Yuan J.H. et al., "Ferroelectricity in HfO2 from a chemical
perspective." arXiv preprint arXiv:2201.00210 (2022).
[2] Shaoping Li et al., 1997 Jpn. J. Appl. Phys. 36 5169.
[3] Sanghun Jeon et al., “A method of controlling the imprint effect in hafnia
ferroelectric device.” Appl. Phys. Lett. 122, 022901 (2023)
[4] X. J. Lou, “Polarization fatigue in ferroelectric thin films and related materials
.” J. Appl. Phys. 105, 024101 (2009)
[5] T. Mittmann, M. Materano, S. . -C. Chang, I. Karpov, T. Mikolajick and U.
Schroeder, "Impact of Oxygen Vacancy Content in Ferroelectric HZO films on the
Device Performance," 2020 IEEE International Electron Devices Meeting (IEDM), San
Francisco, CA, USA, 2020, pp. 18.4.1-18.4.4
[6] Liu, et al.,” Analog content-addressable memory from complementary FeFETs
” 2024, Device 2, 100218.
[7] Dawber, M., Rabe, K. M., & Scott, J. F. (2005). Physics of thin-film ferroelectric
oxides. Reviews of Modern Physics, 77(4), 1083-1130.
[8] Tyunina, M., & Savinov, M. (2012). Size effects in ferroelectric films: Curie
temperature. Journal of Physics D: Applied Physics, 45(45), 455305.]
[9] Scott, J. F. (2007). Applications of modern ferroelectrics. Science, 315(5814), 954-
959.
[10] Bratkovsky, A. M., & Levanyuk, A. P. (2000). Critical thickness in ferroelectric
thin films. Physical Review Letters, 84(14), 3177-3180.
[11] Dawber, M., Rabe, K. M., & Scott, J. F. (2005). Physics of thin-film ferroelectric
oxides. Reviews of Modern Physics, 77(4), 1083-1130.
[12] Tybell, T., Ahn, C. H., & Triscone, J. M. (1999). Ferroelectricity in thin perovskite
films. Applied Physics Letters, 75(6), 856-858.
[13] Waser, R., & Aono, M. (2007). Nanoionics-based resistive switching memories.
Nature Materials, 6(11), 833-840.
[14] Lee, H. N., Christen, H. M., Chisholm, M. F., Rouleau, C. M., & Lowndes, D. H.
(2005). Strong polarization enhancement in asymmetric three-component ferroelectric
superlattices. Nature, 433(7024), 395-399.
[15] Garcia, V., & Bibes, M. (2014). Ferroelectric tunnel junctions for information
storage and processing. Nature Communications, 5, 4289.
[16] Ghosez, P., & Junquera, J. (2005). First-principles modeling of ferroelectric oxide
nanostructures. Journal of Computational Chemistry, 27(2), 287-293.
[17] Lou, X. J. (2009). Polarization fatigue in ferroelectric thin films and related
materials. Journal of Applied Physics, 105(2), 024101.
[18] Kohlstedt, H., Pertsev, N. A., Rodriguez Contreras, J., & Waser, R. (2005). The
fatigue of ferroelectric and doped antiferroelectric thin films. Applied Physics Letters,
87(8), 082902.
[19] Dawber, M., & Scott, J. F. (2000). A model for fatigue-free ferroelectric capacitors:
Graded layers. Journal of Physics: Condensed Matter, 12(11), L199-L203.
[20] Seidel, J., Martin, L. W., He, Q., et al. (2009). Conduction at domain walls in oxide
multiferroics. Nature Materials, 8(3), 229-234.
[21] Kohlstedt, H., Pertsev, N. A., Rodriguez Contreras, J., & Waser, R. (2005). The
fatigue of ferroelectric and doped antiferroelectric thin films. Applied Physics Letters,
87(8), 082902.
[22] Junquera, J., & Ghosez, P. (2003). Critical thickness for ferroelectricity in
perovskite ultrathin films. Nature, 422(6931), 506-509.
[23] Nagarajan, V., Roytburd, A., Stanishevsky, A., et al. (2003). Dynamics of
ferroelastic domains in ferroelectric thin films. Nature Materials, 2(1), 43-47.
[24] Lee, D., Baek, S. H., Folkman, C. M., et al. (2010). Polarity enhancement in
ultrathin ferroelectric BaTiO? films. Advanced Materials, 22(11), 2336-2340.
[25] Muller, J., Schroder, U., Boscke, T. S., et al. (2012). Ferroelectricity in simple
binary ZrO? and HfO?. Nano Letters, 12(8), 4318-4323.
[26] Park, M. H., Lee, Y. H., Kim, H. J., et al. (2015). Ferroelectricity and
antiferroelectricity of doped thin HfO?-based films. Advanced Materials, 27(11), 1811-
1831.
[27] Starschich, S., & Bottger, U. (2016). Evidence for oxygen vacancy movement
during wake-up in ferroelectric hafnium oxide. Applied Physics Letters, 108(3), 032903.
[28] Zhou, D., & Cao, F. (2016). Evolution of ferroelectric HfO? in ultrathin region
down to 3 nm. Journal of Applied Physics, 120(4), 044102.
[29] Mart, C., Chernikova, A. G., & Markeev, A. M. (2020). Engineering of
ferroelectric Hf0.5Zr0.5O2 thin films for next generation non-volatile memory.
Nanoscale, 12(3), 2018-2026.
[30] Kunneth, C., & Kersch, A. (2016). Ab initio modeling of ferroelectric hafnium
oxide. Journal of Applied Physics, 119(13), 134109.
[31] Zane, F., Narlikar, G., Basu, A., et al. (2003). CoolCAMs: Power-efficient TCAMs
for forwarding engines. IEEE INFOCOM 2003. Twenty-second Annual Joint
Conference of the IEEE Computer and Communications Societies, 42-52.
[32] Chao, H. J. (2001). Next generation routers. Proceedings of the IEEE, 89(11),
2041-2054.
[33] Yang, W., Lee, C., & Lin, S. (2018). Design of a multi-bit content addressable memory (CAM) using low-power techniques. Microelectronics Journal, 73, 1-7.
[34] Pagiamtzis, K., & Sheikholeslami, A. (2006). Content-addressable memory (CAM)
circuits and architectures: A tutorial and survey. IEEE Journal of Solid-State Circuits,
41(3), 712-727.
[35] Spitznagel, M., Taylor, A., & Turner, J. (2003). Packet classification using
extended TCAMs. Proceedings of the 11th IEEE International Conference on Network
Protocols, 120-131.
[36] Ryu, K., Lee, S., & Kim, J. (2011). A 256×144 TCAM architecture using a
segmented match line to reduce power consumption. IEEE Journal of Solid-State
Circuits
[37] 王聖閔, “Research on Multifunctional Metal Gate and HfO2/ZrO2 Superlattice
Stacks in Ferroelectric Transistors for High-Temperature Data Retention, Multi-Level
Cell Storage, and Long Endurance” , 國立中央大學,碩士論文, 2023
[38] M. Pe?i? et al., “Physical Mechanisms behind the Field-Cycling Behavior of
HfO2-Based Ferroelectric Capacitors”Adv. Funct. Mater., 26, 4601 (2016)
[39] V. A. Isupov, “Ferroelectric and antiferroelectric perovskites Pb (B′0.5B′′0.5)
O3.” Ferroelectrics, vol. 289, no. 1, pp. 131-195., 2003.
[40] Nitin Dahad, Memory Startup Brings FeFET Solutions to NVM Market.
[41] Zhuravlev, M. Y., et al. (2005). Ferroelectric tunnel junctions: The effect of
polarization reversal on the tunneling current. Physical Review Letters, 94(24),
246802.
[42] Garcia, V., & Bibes, M. (2014). Ferroelectric tunnel junctions for information
storage and processing. Nature Communications, 5, 4289.
[43] Chanthbouala, A., et al. (2012). A ferroelectric memristor. Nature Materials,
11(10), 860-864.
[44] Pantel, D., et al. (2012). Reversible electrical switching of spin polarization in
multiferroic tunnel junctions. Nature Materials, 11(4), 289-293.
[45] T. Schenk and S. Mueller, "A New Generation of Memory Devices Enabled by
Ferroelectric Hafnia and Zirconia," 2021 IEEE International Symposium on
Applications of Ferroelectrics (ISAF), Sydney, Australia, 2021, pp. 1-11, doi:
10.1109/ISAF51943.2021.9477377.
[46] Bong Ho Kim, et al., Oxygen Scavenging in HfZrOx-Based n/p-FeFETs for
Switching Voltage Scaling and Endurance/Retention Improvement, “Advanced
Eletronic Materials” ,2023
[47] E. H. Nicollian and A. Goetzberger, “The si-sio, interface–electrical properties as
determined by the metal-insulator-silicon conductance technique,” Bell Syst. Tech. J.,
vol. 46, no. 6, pp. 1033–1055, Jul./Aug. 1967
[48] Y. Qu, J. Li, M. Si, X. Lyu and P. D. Ye, "Quantitative Characterization of Interface Traps in Ferroelectric/Dielectric Stack Using Conductance Method,"
in IEEE Transactions on Electron Devices, vol. 67, no. 12, pp. 5315-5321, Dec. 2020,
doi: 10.1109/TED.2020.3034564.
[49] M.-K. Kim, et al., “Ferroelectric Analog Synaptic Transistors”Nano Letters,
2019.
[50] Y. Xu et al., "Robust Breakdown Reliability and Improved Endurance in
Hf0.5Zr0.5O2 Ferroelectric Using Grain Boundary Interruption," in IEEE
Transactions on Electron Devices, vol. 69, no. 1, pp. 430-433, Jan. 2022
[51]陳昱廷, “Development and Reliability Analysis of 3 Bits-Per-Cell Ferroelectric
FETs Achieving Immediate Read-After-Write and High Endurance (>1012 Cycles),
Multi-Level Cell Storage, and Long Endurance” , 國立中央大學,碩士論文, 2024
[52] D.J.J. Loy et al., “Conduction Mechanisms on High Retention Annealed MgObased Resistive Switching Memory Devices”, Sci. Rep 8, 14774, OCTOBER 2018
[53] Kukli, K., et al., Aluminum Oxide Thin Films for Electronic Applications, Thin
Solid Films, 2001.
[54] Zhu, X., et al., Improved Interface Properties of HfO2-Based FeFETs Using
Al2O3 as Buffer Layer, IEEE Transactions on Electron Devices, 2019.
[55] Lee, H. J., et al., Impact of Al2O3 Layer on Ferroelectric Properties in FeFETs,
Journal of Applied Physics, 2018.
[56] Chen, W., et al., Reduction of Leakage Current in HfO2-Based FeFET Using
Al2O3 Interlayer, Microelectronics Journal, 2020.
[57] Suh, Y. K., et al., Thickness Optimization of Al2O3 in FeFETs for Enhanced
Memory Performance, IEEE Electron Device Letters, 2020.
[58] K. Chen et al., “Excellent reliability of ferroelectric HfZrOx free from wake-up
and fatigue effects by NH3 plasma treatment,” Symposium on VLSI Circuits, pp. T84-
T85, 2017.
[59] Jihoon Kim et al., “A study on H2 plasma treatment effect on a-IGZO thin film
transistor,” Journal of Materials Research, 27, 2318–2325, 2012.
[60] K. Toprasertpong, M. Takenaka and S. Takagi, "Direct Observation of Interface
Charge Behaviors in FeFET by Quasi-Static Split C-V and Hall Techniques:
Revealing FeFET Operation," 2019 IEEE International Electron Devices Meeting
(IEDM), San Francisco, CA, USA, 2019, pp. 23.7.1-23.7.4
[61] C. -Y. Liao et al., "Multibit Ferroelectric FET Based on Nonidentical Double
HfZrO2 for High-Density Nonvolatile Memory," in IEEE Electron Device Letters, vol.
42, no. 4, pp. 617-620, April 2021, doi: 10.1109/LED.2021.3060589.
[62] Mulaosmanovic, Halid, et al. "Switching kinetics in nanoscale hafnium oxide based ferroelectric field-effect transistors." ACS applied materials & interfaces 9.4
(2017): 3792-3798.
[63] Mulaosmanovic, Halid, et al. "Interplay between switching and retention in HfO
2-based ferroelectric FETs." IEEE Transactions on Electron Devices 67.8 (2020): 3466-
3471.
[64] K. Ni et al., "A Novel Ferroelectric Superlattice Based Multi-Level Cell NonVolatile Memory," 2019 IEEE International Electron Devices Meeting (IEDM), San
Francisco, CA, USA, 2019, pp. 28.8.128.8.4,doi:10.1109/IEDM19573.2019.8993670.
[65] T. S. Boscke et al., “Ferroelectricity in hafnium oxide thin films” , Appl. Phys.
Lett 99, 102903, SEPTEMBER 2011
[66] K. Ni et al., "SoC Logic Compatible Multi-Bit FeMFET Weight Cell for
Neuromorphic Applications," 2018 IEEE International Electron Devices Meeting
(IEDM), San Francisco, CA, USA, 2018, pp. 13.2.1-13.2.4, doi:
10.1109/IEDM.2018.8614496.
[67] W. Xu et al., "A Novel Ferroelectric FET Based Universal Content Addressable
Memory With Reconfigurability for Area- and Energy-Efficient In-MemorySearching System," in IEEE Electron Device Letters, vol. 45, no. 7, pp. 1345-1348,
July 2024, doi: 10.1109/LED.2024.3406042
[68] H. Xu, J. Yang, T. Kampfe, C. Zhuo, K. Ni and X. Yin, "On the Challenges and
Design Mitigations of Single Transistor Ferroelectric Content Addressable Memory,"
in IEEE Electron Device Letters, vol. 45, no. 1, pp. 112-115, Jan. 2024, doi:
10.1109/LED.2023.3334756.
[69] A. Sunilan, et al., TechRxiv. August 22, 2023.
[70] S. Salahuddin, A. Tan, S. Cheema, N. Shanker, M. Hoffmann and J. . -H. Bae,
"FeFETs for Near-Memory and In-Memory Compute," 2021 IEEE International
Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2021, pp. 19.4.1-19.4.4,
doi: 10.1109/IEDM19574.2021.9720622.
[71] S. Dutta et al., "Monolithic 3D Integration of High Endurance Multi-Bit
Ferroelectric FET for Accelerating Compute-In-Memory," 2020 IEEE International
Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, pp. 36.4.1-36.4.4,
doi: 10.1109/IEDM13553.2020.9371974.
[72]X. Yin et al., "FeCAM: A Universal Compact Digital and Analog Content
Addressable Memory Using Ferroelectric," in IEEE Transactions on Electron Devices,
vol. 67, no. 7, pp. 2785-2792, July 2020
[73]K. Pagiamtzis and A. Sheikholeslami, "Content-addressable memory (CAM) circuits and architectures: a tutorial and survey," in IEEE Journal of Solid-State
Circuits, vol. 41, no. 3, pp. 712-727, March 2006
指導教授 唐英瓚(Ying-Tsan Tang) 審核日期 2024-12-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明