參考文獻 |
[1] https://www.viavisolutions.com/en-us/fttx-network-designdeployment
[2] L. Breyne1 et al., " 50G Burst-Mode Receiver Using Monolithic SOAUTC and Burst-Mode TIA," 2024 Optical Fiber Communications
Conference and Exhibition (OFC), San Diego, CA, USA, 2024, pp.
Tu3H.1.
[3] S. Nishikawa, et al. “SOA-integrated High-power EML-CAN for
50G-PON Downstream,” 2024 Optical Fiber Communications
Conference and Exhibition (OFC), San Diego, CA, USA, 2024, pp.
Tu2D.6.
[4] https://blog.csdn.net/qq_38987057/article/details/106774364
[5] N.Tanaka, D.Umeda "25G Receiver performance, "November 7-9th,
2016 Sumitomo Electric Industries, LTD.
[6] 50-Gigabit-capable passive optical networks (50GPON): Physical
media dependent (PMD) layer specification, Recommendation
G.9804.3, ITU-T, Aug. 2019. [Online]. Available:
http://handle.itu.int/11.1002/1000/14714.
[7] G. Coudyzer et al., "100 Gbit/s PAM-4 Linear Burst-Mode
Transimpedance Amplifier for Upstream Flexible Passive Optical
Networks," in Journal of Lightwave Technology, vol. 41, no. 12, pp.
3652-3659, July 2023.
[8] T. Gurne et al., “First demonstration of a 100 Gbit/s PAM-4 linear
burst-mode transimpedance amplifier for upstream flexible PON,” in
Proc. Eur. Conf. Opt. Commun, 2022, pp. 1–4.
95
[9] S. O. Kasap, "Optoelectronics and photonics: principles and
practices," Prentice Hall, 2001.
[10] M. Huang, S. Li, P. Cai, G. Hou, T.-I. Sun, W. Chen, C.-Y. Hong, and
D. Pan, “Germanium on Silicon Avalanche Photodiode,” IEEE J. of
Sel. Topics in Quantum Electronics, vol. 24, no. 2, pp. 3800911,
March/April 2018.
[11]B. Shi, F. Qi, P. Cai, X. Chen, Z. He, Y. Duan, G. Hou, T. Su, S. Li, W.
Chen, C. Hong, R.-Chen Yu and D. Pan., "106 Gb/s Normal-Incidence
Ge/Si Avalanche Photodiode with High Sensitivity," 2020 Optical
Fiber Communications Conference and Exhibition (OFC), 2020, pp.
1-3.
[12] F. Signorelli, F. Telesca, E. Conca, A. D. Frera, A. Ruggeri, A.
Giudice, and A. Tosi, "Low-Noise InGaAs/InP Single-Photon
Avalanche Diodes for Fiber-Based and Free-Space Applications,"
IEEE J. Sel. Top. Quantum Electron., vol. 28, no. 2, pp. 3801310, April,
2022.
[13]J. C. Campbell, et al., Recent Advances in Avalanche
Photodiodes,July/Aug. 2004.
[14]E. Ishimura, E. Yagyu, M. Nakaji, S. Ihara, K. Yoshiara, T. Aoyagi, Y.
Tokuda, and T. Ishikawa, "Degradation Mode Analysis on Highly
Reliable Guarding-Free Planar InAlAs Avalanche Photodiodes,"
IEEE/OSA Journal of Lightwave Technology, vol. 25, pp. 3686-
3693,Dec., 2007.
[15] B. F. Levine, R. N. Sacks, J. Ko, M. Jazwiecki, J. A. Valdmanis, D.
Gunther, and J. H. Meier, "A New Planar InGaAs-InAlAs Avalanche
96
Photodiode," IEEE Photon. Tech. Lett., vol. 15, pp. 1898-1900, Sep.,
2006.
[16]J. C. Campbell, S. Demiguel, F. Ma, A. Beck, X. Guo, S. Wang, X.
Zheng, X. Li, J. D. Beck, M. A. Kinch, A. Huntington, L. A. Coldren,
J. Decobert, and N. Tscherptner, "Recent Advances in Avalanche
Photodiodes," IEEE J. of Sel. Topics in Quantum Electronics, vol. 10,
pp. 777-787, July/Aug., 2004.
[17]M. Lahrichi, G. Glastre, E. Derouin, D. Carpentier, N. Lagay, J.
Decobert, and M. Achouche, "240-GHz Gain-Bandwidth Product
Back-Side Illuminated AlInAs Avalanche Photodiodes,"IEEE
Photonics Technology Letters,vol.22,pp.1373-1375, September 2010
[18] M. Nada, Y. Yamada and H. Matsuzaki, "Responsivity-Bandwidth
Limit of Avalanche Photodiodes: Toward Future Ethernet Systems,"
IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, pp. 1-11,
March-April 2018.
[19]C. I. Dai, "Single-Photon Avalanche Photodiode Fabricated with
Standard CMOS Technology," Master thesis, National Chiao Tung
University, Taiwan, July, 2010.
[20]E.Jan "Low Noise Transimpedance Amplifier Design Using Berkeley
Analog Generator,"EECS Department, University of California,
Berkeley Technical Report No. UCB/EECS-2020-146 August 13,
2020
[21]http://www.film-top1.com/news-info.aspid_279.html
[22]B. Shi, F. Qi, P. Cai, X. Chen, Z. He, Y. Duan, G. Hou, T. Su, S. Li, W.
Chen, C. Hong, R.-Chen Yu and D. Pan., "106 Gb/s Normal-Incidence
Ge/Si Avalanche Photodiode with High Sensitivity," 2020 Optical
97
Fiber Communications Conference and Exhibition (OFC), 2020, pp.
1-3.
[23]Nassem, Po-Shun Wang, Zohauddin Ahmad, Syed Hasan Parvez, Sean
Yang, H.-S. Chen, Hsiang-Szu Chang, Jack Jia-Sheng Huang, and JinWei Shi, "Top-Illuminated Avalanche Photodiodes With Cascaded
Multiplication Layers for High-Speed and Wide Dynamic Range
Performance," Journal of Lightwave Technology, vol. 40, no. 24, pp.
7893-7900, 15 Dec.15, 2022, doi: 10.1109/JLT.2022.3204743
[24]M. Nada, T. Yoshimatsu, F. Nakajima, K. Sano and H. Matsuzaki, "A
42-GHz Bandwidth Avalanche Photodiodes Based on III-V
Compounds for 106-Gbit/s PAM4 Applications," J. Lightwave
Technol., vol. 37, no. 2, pp. 260-265, Jan. 2019.
[25]M. Nada, Y. Yamada and H. Matsuzaki, "Responsivity-Bandwidth
Limit of Avalanche Photodiodes: Toward Future Ethernet Systems,"
IEEE J. of Sel. Topics in Quantum Electronics, vol. 24, no. 2, pp. 1-11,
March-April 2018.
[26]Shi, Y., Li, X., Chen, G. et al. "Avalanche photodiode with ultrahigh
gain–bandwidth product of 1,033 GHz. "Nat. Photon. (2024).
https://doi.org/10.1038/s41566-024-01421-2
[27]J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun "Dynamic Analysis of
High-Efficiency InP Based Photodiode for 40 Gbit/sec Optical
Interconnect across a Wide Optical Window (0.85 to 1.55 µm),"
Journal of Lightwave Technology, vol. 33, no. 4, pp. 921- 927, Feb.,
2015
[28]N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, "InP-InGaA UniTraveling-Carrier Photodiode With Improved 3-dB Bandwidth of
98
Over 150GHz," IEEE Photon. Technol. Lett., vol. 10, pp. 412-414, Mar.
1998.
[29]J.-W. Shi, C.-B. Huang, and C.-L. Pan, "Millimeter-wave Photonic
Wireless Links for Very-High Data Rate Communication," NPG Asia
Materials, vol. 3, No. 2, pp. 41-48, April, 2011.
[30]陳信瑜「具有高功率、超寬頻表現在 W-頻段(75-110GHz)的光子
傳輸器 High-Power and Ultra-Wide Bandwidth Photonic Transmitter
at W-band (75-110GHz)」,國立交通大學,博士論文, 民國 99 年。
[31]B. Wang, Z. Huang, Y. Yuan, D. Liang, X. Zeng, M. Fiorentino, and R.
G. Beausoleil, "64 Gb/s low-voltage waveguide SiGe avalanche
photodiodes with distributed Bragg reflectors," Photonics Research,
vol. 8, no. 7, pp. 1118-1123, July, 2020.
[32]MACOM, 100 Chelmsford Street, Lowell, MA, 0185, United States.
(Product: MARP-BA56)
[33]T. Okimoto, K. Ashizawa, H. Mori, K. Ebihara, K. Yamazaki, S.
Okamo-to,K. Horino, Y. Ohkura, H. Yagi, M. Ekawa and Y. Yoneda,
"106-Gb/s Waveguide AlInAs/GaInAs Avalanche Photodiode with
Butt-joint Coupling Structure," 2022 Optical Fiber Communications
Conference and Exhibition (OFC), 2022, pp.W3D.2.
[34]G. S. Kinsey, J. C. Campbell, and A. G. Dentai, “Waveguide avalanche
photodiode operating at 1.55 µm with a gain-bandwidth product of 320
GHz,” IEEE Photon. Tech. Lett., vol. 13, no. 8, pp. 842–844, Aug.
2001.
[35]B. Shi, F. Qi, P. Cai, X. Chen, Z. He, Y. Duan, G. Hou, T. Su, S. Li, W.
Chen, C. Hong, R.-Chen Yu and D. Pan., "106 Gb/s Normal-Incidence
Ge/Si Avalanche Photodiode with High Sensitivity," 2020 Optical
Fiber Communications Conference and Exhibition (OFC), 2020,
pp.M3D.2.
99
[36]M. Nada, T. Yoshimatsu, F. Nakajima, K. Sano and H. Matsuzaki, "A
42-GHz Bandwidth Avalanche Photodiodes Based on III-V
Compounds for 106-Gbit/s PAM4 Applications,"Journal of
Lightwave Technology., vol. 37, no. 2, pp. 260-265, Jan. 2019.
[37]M. Nada, Y. Muramoto, H. Yokoyama and H. Matsuzaki, "High-speed
high-power-tolerant avalanche photodiode for 100-Gb/s applications,"
2014 IEEE Photonics Conference, San Diego, CA, USA, 2014, pp.
172-173, doi: 10.1109/IPCon.2014.6995303.
[38]Albis Optoelectronics AG, Moosstrasse 2a, 8803 Rueschlikon,
Switzerland. (Product: APD20E1)
[39]Nassem, Nan-Wei Chen, Syed Hasan Parvez, Zohauddin Ahmad, Sean
Yang, H-S Chen, Hsiang-Szu Chang, Jack Jia-Sheng Huang, and JinWei Shi, "Simultaneous enhancement of the bandwidth and
responsivity in high-speed avalanche photodiodes with an optimized
flip-chip bonding package," Opt. Express, vol. 31, pp. 26463-26473,
July, 2023.
[40]16 T. Beckerwerth, R. Behrends, F. Ganzer, P. Runge and M. Schell,
"Linearity Characteristics of Avalanche Photodiodes For InP Based
PICs," in IEEE Journal of Selected Topics in Quantum Electronics, vol.
28, no. 2, pp. 1-8, March-April 2022, Art no. 3803408,doi:
10.1109/JSTQE.2021.3127853.
[41] M. Nada, Y. Yamada, and H. Matsuzaki, “A High-Linearity
Avalanche Photodiodes with a Dual-Carrier Injection Structure,” IEEE
Photon. Technol. Lett, vol. 29, no. 21, pp. 1828-1831, Nov., 2017.
[42] M. Nada, Y. Muramoto, H. Yokoyama, T. Ishibashi, and H. Matsuzaki,
"Triple-mesa Avalanche Photodiode With Inverted P-Down Structure
for Reliability and Stability," IEEE/OSA Journal of Lightwave
Technology, vol. 32, no. 8, pp. 1543-1548, April, 2014.
[43]https://zh.wikipedia.org/zh-tw/%E8%A6%86%E6%
100
[44]N. Li, H. Chen, N. Duan, M. Liu, S. Demiguel, R. Sidhu, A. L. Holmes,
Jr., and J.C. Campbell, "High Power Photodiode Wafer Bonded to Si
Using Au With Improved Responsivity and Output Power" IEEE
Photon. Technol. Lett, vol. 18, pp. 2526-2528, Dec. 2006.
[45]N. Duan, X. Wang, N. Li, H.-D. Liu, and Joe C. Campbell "Thermal
Analysis of High-Power InGaAs-InP Photodiodes," IEEE Journal of
Quantum Electronics, vol. 42, no. 12, pp. 1255-1258, Dec. 2006. |