博碩士論文 111521011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.135.220.9
姓名 吳湧峰(Yung-Feng Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於氮化鍺碲碳非砷化物選擇器的高熱穩定性、低電壓變異性及高循環耐久性 (>1011) 的物理分析
(The Physical Analysis of High Thermal Stability, Low Voltage Variability, and High Endurance (>1011) Based on a Germanium Tellurium Carbon Nitride Non-Arsenide Selector)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 時至今日數據儲存量的需求爆炸性增長,迫切需要能夠在更短時間內儲存大量數據的記憶體技術,而這是 Flash 或 DRAM 無法實現的壯舉。Intel Optane,通常被稱為三維相變記憶體,是最有前途的候選者之一。具有交叉點架構的 Optane 透過層疊記憶體和稱為歐姆臨界開關 (OTS) 的選擇器來構建。OTS 裝置使用 chalcogenide 薄膜,因此近年來引起了越來越多的關注。在本研究中,我們探索了氮摻雜的GeTeC材料,作為一種Ovonic閾值開關選擇器,並且其電性能優於商業化的GeSe基選擇器。這種選擇器具有大於10?的關閉到開啟電流比,能夠相容於後段製程(400°C持續30分鐘),並擁有變異性低的大電壓窗口(0.8V)。為了探索微量氮元素為何顯著改變材料特性,我們在這項計算研究中應用了Berry相位方法,對GeTe基材料施加均勻電場,觀察到能隙內的局域態轉變為非局域的導帶邊緣電子態。我們採用了嚴謹的第一性原理計算和從頭算分子動力學來分析材料內的化學鍵結(化學8-N規則)以及ICOHP分析方法,以揭示低變異性的來源,這是由於穩定的C-N和C-Ge鍵結以及C-C鏈條的形成。這些原子鍵結增強了GeTe基硫族化物材料內的四面體簇結構,抑制了原子移動性並減少了相分離,從而改善了循環間的Vth變異性。透過電場模擬計算。我們的研究深入探討了OTS材料中摻砷的影響,為先進選擇器的設計和應用鋪平了道路。
摘要(英) To date, the demand for data storage has seen explosive growth, creating an urgent need for memory technologies capable of storing large amounts of data in a shorter time—something that Flash or DRAM cannot achieve. Intel Optane, often referred to as 3D phase-change memory, is one of the most promising candidates. Built with a cross-point architecture, Optane uses stacked memory and a selector known as an Ovonic Threshold Switch (OTS). OTS devices utilize chalcogenide thin films, which have drawn increasing attention in recent years. In this study, we explore nitrogen-doped GeTeC material as an Ovonic threshold switch selector, which demonstrates superior electrical performance compared to commercial GeSe-based selectors. This selector has an off-to-on current ratio greater than 10?, compatibility with back-end processes(400°C for 30 minutes), and a low variability with a large voltage window (0.8V). To investigate how trace nitrogen elements significantly alter material properties, we applied the Berry phase method in this computational study, imposing a uniform electric field on GeTe-based materials. We observed that localized states within the band gap transition to delocalized conduction band edge states. We employed rigorous first-principles calculations and ab initio molecular dynamics to analyze chemical bonding within the material (following the 8-N rule for chemistry) and used the ICOHP analysis method to reveal the source of low variability, attributed to the formation of stable C-N and C-Ge bonds and C-C chains. These atomic bonds enhance the tetrahedral cluster structure within GeTe-based chalcogenide materials, suppress atomic mobility, and reduce phase separation, thereby improving Vth variability across cycles. Through electric field simulation calculations, our research provides an in-depth exploration of the effects of arsenic doping in OTS materials, paving the way for the design and application of advanced selectors.
關鍵字(中) ★ OTS選擇器
★ 物理模型分析
關鍵字(英)
論文目次 摘要 ii
Abstract iii
致謝 v
目錄 vii
圖目錄 x
第一章 序論及文獻回顧 1
1.1 大數據與AIOT(人工智慧與物聯網)所需的記憶體技術 1
1.1.1 傳統的PNP junction 2
1.1.2 Mixed Ion–Electron Conductor (MIEC) 2
1.1.3 Metal–Insulator Transition (MIT) 3
1.1.4 Ion-diffusion threshold switching 3
1.2 OTS-selector 4
1.2.1 OTS-Selector的現象與發展 4
1.2.2 OTS的機制 5
1.2.3 OTS-Selector的材料 13
1.3 OTS-Selector之材料分析 18
1.3.1 傳統含As之高熱穩定性、高耐久性的OTS-Selector 18
1.3.2 不含As之新興OTS材料 20
第二章 理論模擬計算之原理 27
2.1 第一原理計算 27
2.1.1 密度泛函理論 (Density Functional Theory, DFT) 27
2.1.2 VASP?勢 (VASP Pseudopotential) 29
2.1.3 平面波投影法(Projected Augmented Waves, PAW) 29
2.2 分子動力學 (Molecular dynamics) 29
第三章 理論模擬計算之建模與步驟 32
3.1 VASP 的AIMD設定 32
3.1.1 POSCAR設定 32
3.1.2 INCAR設定 32
3.1.3 KPOINTS設定 33
3.2 熱穩定性計算 33
3.2.1 VASP第一原理設定 33
3.3 擴散係數(MSD)計算 34
3.4 能態密度(DOS&IPR)計算 35
3.4.1能態密度(DOS) 35
3.4.2 Inverse Participation Ratio(IPR) 35
3.5 Crystal orbital Hamilton populations(COHP&ICHOP)計算 36
3.6 局域與非局域態電子計算(ELF) 36
3.7 電場計算 37
3.8 再結晶計算 38
第四章 結果與討論 42
4.1 能態密度(DOS) 42
4.1.1 單元摻雜 42
4.1.2 雙元摻雜 43
4.2 熱穩定性指標(BAD)及Order Parameter q 43
4.2.1 單元摻雜 43
4.2.2 雙元摻雜 44
4.3 局域與非局域態電子ELF 44
4.3.1 單元摻雜 44
4.4 COHP及ICHOP 45
4.4.1 單元摻雜 45
4.4.2 雙元摻雜 45
4.5 擴散係數(MSD) 46
4.5.1 單元摻雜 46
4.5.2 雙元摻雜 46
4.6 電場 46
4.6.1 單元摻雜 46
4.6.2 雙元摻雜 47
4.7再結晶計算 47
第五章 結論與未來展望 57
參考文獻 59
附錄1 71
摻雜濃度與相變轉換計算 71
參考文獻 [1]Servalli, G., A 45nm generation Phase Change Memory technology. 2009 IEEE International Electron Devices Meeting (IEDM).(2009)
[2]G.W. Burr, K.V., R.S.Shenoy,A. Padilla, M. Bright-Sky et al., Large-scale(512kbit) integration of multilayerready access-devices based on mixed-ionic-electronic conduction (MIEC) at 100% yield. in 2012 Symposium on VLSI Technology (VLSIT). Honolulu, HI, USA. 41–42.(2012)
[3]Kumar, S., J.P. Strachan, and R.S. Williams, Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature, 2017. 548(7667): p. 318-321.(2017)
[4]D. Kau, S.T., I.V. Karpov, R. Dodge, B. Klehn et al., A stackable cross point Phase Change Memory. in 2009 IEEE International Electron Devices Meeting (IEDM). Baltimore, MD, USA. 1–4.(2009)
[5]W.R. Northover, A.D.P.(1964)
[6]Dennard, R.H.(1967)
[7]Ovshinsky, S.R. (1966)
[8]Ovshinsky, S.R., Reversible Electrical Switching Phenomena in Disordered Structures. Physical Review Letters, 1968. 21(20): p. 1450-1453.(1968)
[9]Y. Choi, I.S., M.-H. Park, H. Chung, S. Chang et al., A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth. in 2012 IEEE International Solid-State Circuits Conference.San Francisco, CA, USA. 46–48.(2012)
[10]Adler, D., et al., Threshold switching in chalcogenide-glass thin films. Journal of Applied Physics, 1980. 51(6): p. 3289-3309.(1980)
[11]Redaelli, A., et al., Threshold switching and phase transition numerical models for phase change memory simulations. Journal of Applied Physics, 2008. 103(11).(2008)
[12]Kroll, D.M., Theory of electrical instabilities of mixed electronic and thermal origin. II. Switching as a nucleation process. Physical Review B, 1975. 11(10): p. 3814-3821.(1975)
[13]Karpov, V.G., et al., Field-induced nucleation in phase change memory. Physical Review B, 2008. 78(5).(2008)
[14]Karpov, V.G., et al., Nucleation switching in phase change memory. Applied Physics Letters, 2007. 90(12).(2007)
[15]Karpov, I.V., et al., Fundamental drift of parameters in chalcogenide phase change memory. Journal of Applied Physics, 2007. 102(12).(2007)
[16]Buscemi, F., et al., A HydroDynamic Model for Trap-Assisted Tunneling Conduction in Ovonic Devices. IEEE Transactions on Electron Devices, 2023. 70(4): p. 1808-1814.(2023)
[17]N. Saxena, A.M., Ultrafast threshold switching dynamics in phase-change materials. Phys. Status Solidi RRL 16(9), 2200101.(2022)
[18]Nardone, M., et al., Electrical conduction in chalcogenide glasses of phase change memory. Journal of Applied Physics, 2012. 112(7).(2012)
[19]D.M. Kroll, Theory of electrical instabilities of mixed electronic and thermal origin. Phys. Rev. B 9, 1669–1706.(1974)
[20]Kaplan, T. and D. Adler, Thermal Effects in Amorphous-Semiconductor Switching. Applied Physics Letters, 1971. 19(10): p. 418-420.(1971)
[21]Kaplan, T. and D. Adler, Electrothermal switching in amorphous semiconductors. Journal of Non-Crystalline Solids, 1972. 8-10: p. 538-543.(1972)
[22]Kaplan, T., et al., Thermally Induced Negative Resistance in Si-Doped YIG. Applied Physics Letters, 1972. 20(11): p. 439-441.(1972)
[23]Wimmer, M. and M. Salinga, The gradual nature of threshold switching. New Journal of Physics, 2014. 16(11).(2014)
[24]Lowrey, S.L.a.T., OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224). Washington, DC, USA.36.5.1–36.5.4.(2001)
[25]Owen, A.E. and J.M. Robertson, Electronic conduction and switching in chalcogenide glasses. IEEE Transactions on Electron Devices, 1973. 20(2): p. 105-122.(1973)
[26]Vezzoli, G.C., P.J. Walsh, and L. William Doremus, Threshold switching and the on-state in non-crystalline chalcogenide semiconductors. Journal of Non-Crystalline Solids, 1975. 18(3): p. 333-373.(1975)
[27]Fantini, P., et al., Experimental investigation of transport properties in chalcogenide materials through 1∕f noise measurements. Applied Physics Letters, 2006. 88(26).(2006)
[28]Ielmini, D. and Y. Zhang, Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. Journal of Applied Physics, 2007. 102(5).(2007)
[29]Ielmini, D., Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Physical Review B, 2008. 78(3).(2008)
[30]Fantini, P., et al., Threshold Switching by Bipolar Avalanche Multiplication in Ovonic Chalcogenide Glasses. Advanced Electronic Materials, 2023. 9(7).(2023)
[31]Clima, S., et al., Ovonic Threshold Switch Chalcogenides: Connecting the First-Principles Electronic Structure to Selector Device Parameters. ACS Applied Electronic Materials, 2022. 5(1): p. 461-469.(2022)
[32]Kastner, M., D. Adler, and H. Fritzsche, Valence-Alternation Model for Localized Gap States in Lone-Pair Semiconductors. Physical Review Letters, 1976. 37(22): p. 1504-1507.(1976)
[33]Emin, D., Current-driven threshold switching of a small polaron semiconductor to a metastable conductor. Physical Review B, 2006. 74(3).(2006)
[34]Degraeve, R., et al., Modeling and spectroscopy of ovonic threshold switching defects, in 2021 IEEE International Reliability Physics Symposium (IRPS). 2021. p.1-5.(2021)
[35]Mott, N.F., Conduction in non-crystalline materials. Philosophical Magazine, 1969. 19(160): p. 835-852.(1969)
[36]Clima, S., et al., Ovonic Threshold?Switching GexSey Chalcogenide Materials: Stoichiometry, Trap Nature, and Material Relaxation from First Principles. physica status solidi (RRL) – Rapid Research Letters, 2020. 14(5).(2020)
[37]Clima, S., et al., Material relaxation in chalcogenide OTS SELECTOR materials. Microelectronic Engineering, 2019. 215.(2019)
[38] S. Clima et al., Atomistic investigation of the electronic structure, thermal properties and conduction defects in Ge-rich GexSe1?x materials for selector applications. 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 4.1.1-4.1.4.(2017)
[39]Anderson, P.W., Model for the Electronic Structure of Amorphous Semiconductors. Physical Review Letters, 1975. 34(15): p. 953-955.(1975)
[40]Raty, J.-Y. and P. Noe, Ovonic Threshold Switching in Se?Rich GexSe1?x Glasses from an Atomistic Point of View: The Crucial Role of the Metavalent Bonding Mechanism. physica status solidi (RRL) – Rapid Research Letters, 2020. 14(5).(2020)
[41]Chandler, D. and J.P. Garrahan, Dynamics on the way to forming glass: bubbles in space-time. Annu Rev Phys Chem, 2010. 61: p. 191-217.(2010)
[42]Raty, J.Y., et al., A Quantum-Mechanical Map for Bonding and Properties in Solids. Adv Mater, 2019. 31(3): p. e1806280.(2019)
[43]Zhu, M., et al., Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding. Adv Mater, 2018. 30(18): p. e1706735.(2018)
[44]Shportko, K., et al., Resonant bonding in crystalline phase-change materials. Nat Mater, 2008. 7(8): p. 653-8.(2008)
[45]Noe, P., et al., Toward ultimate nonvolatile resistive memories: The mechanism behind ovonic threshold switching revealed. Sci Adv, 2020. 6(9): p. eaay2830.(2020)
[46]Matsubayashi, D., et al., OTS Physics-based Screening for Environment-friendly Selector Materials, in 2022 International Electron Devices Meeting (IEDM). 2022. p. 8.6.1-8.6.4.(2022)
[47]Slassi, A., et al., Device?to?Materials Pathway for Electron Traps Detection in Amorphous GeSe?Based Selectors. Advanced Electronic Materials, 2023. 9(4).(2023)
[48]Pirovano, A., et al., Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Transactions on Electron Devices, 2004. 51(5): p. 714-719.(2004)
[49]Raty, J.Y., et al., Aging mechanisms in amorphous phase-change materials. Nat Commun, 2015. 6: p. 7467.(2015)
[50]Zhu, M., K. Ren, and Z. Song, Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bulletin, 2019. 44(09): p. 715-720.(2019)
[51]Calarco, R. and F. Arciprete, Keep it simple and switch to pure tellurium. Science, 2021. 374(6573): p. 1321-1322.(2021)
[52]Park, J., et al., Hybrid Selector With Excellent Selectivity and Fast Switching Speed for X-Point Memory Array. IEEE Electron Device Letters, 2018. 39(8): p. 1171-1174.(2018)
[53] A. Verdy et al., Improved Electrical Performance Thanks to Sb and N Doping in Se-Rich GeSe-Based OTS Selector Devices. 2017 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 2017, pp. 1-4.(2017)
[54]N. S. Avasarala et al., Doped GeSe materials for selector applications. 2017 47th European Solid-State Device Research Conference (ESSDERC), Leuven, Belgium, 2017, pp. 168-171.(2017)
[55]Iwasaki, H., et al., Completely Erasable Phase Change Optical Disk. Japanese Journal of Applied Physics, 1992. 31(2S).(1992)
[56]Wong, H.S.P., et al., Metal–Oxide RRAM. Proceedings of the IEEE, 2012. 100(6): p. 1951-1970.(2012)
[57]Ambrosi, E., et al., Reliable Low Voltage Selector Device Technology Based on Robust SiNGeCTe Arsenic-Free Chalcogenide. IEEE Electron Device Letters, 2022. 43(10): p. 1673-1676.(2022)
[58]Wang, L., et al., Thermally Stable and High-Speed Ge-Te Based Ovonic Threshold Switching Selector With a Ge Intercalated Structure. IEEE Electron Device Letters, 2023. 44(7): p. 1096-1099.(2023)
[59]L. Wang, Z.L., Z. Zhang, J. Chen, J. Wen et al., A refresh operation method for solving thermal stability issues an improving endurance of ovonic threshold switching selectors. J. Mater. Chem. C 11, 5411–5421.(2023)
[60]M. Xu, M.X., X. Miao, Deep machine learning unravels the structural origin of mid-gap states in chalcogenide glass for high-density memory integration. InfoMat 4, e12315.(2022)
[61]A. Verdy, G.N., M. Bernard, S. Chevalliez, N. Castellani et al., Carbon electrode for Ge-Se-Sb based OTS selector for ultra low leakage current and outstanding endurance. 2018 IEEE International Reliability Physics Symposium (IRPS). 6D.4–1–6D.4-6.(2018)
[62]X. Li, Z.Y., S. Lv, S. Song, Z. Song, Extended endurance performance and reduced threshold voltage by doping Si in GeSe-based ovonic threshold switching selectors. Thin Solid Films 734, 138837.(2021)
[63]E.P. O’Reilly, J.R., M.J. Kelly, The structure of amorphous GeSe and GeTe. Solid State Commun. 38, 565–568.(1981)
[64]G.I. Kim, J.S., Time of flight measurement of carrier mobility in GexSe1-x glasses. Jpn. J. Appl. Phys. 17, 1789–1794.(1978)
[65]T.T. Nang, M.O., T. Matsushita, S. Yokota, A. Suzuki, Electrical and optical properties of GexSe1-x amorphous thin films. Jpn. J. Appl. Phys. 15, 849–853.(1976)
[66]O. Uemura, Y.S., T. Satow, The amorphous structure of the Ge-Se system. Phys. Stat. Sol. 26(1), 99–103.(1974)
[67] N. S. Avasarala et al., Half-threshold bias Ioff reduction down to nA range of thermally and electrically stable high-performance integrated OTS selector, obtained by Se enrichment and N-doping of thin GeSe layers. 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2018, pp. 209-210.(2018)
[68] S.-D. Kim, H.-W.A., S.Y. Shin, D.S. Jeong, S.H. Son et al., Effect of Ge concentration in GexSe1-x chalcogenide glass on the electronic structures and the characteristics of ovonic threshold switching (OTS) devices. ECS Solid State Lett. 2, Q75–Q77.(2013)
[69] K. Tanaka, Y.K., A. Odajima, Physical properties and photoinduced changes of amorphous Ge–S films. Thin Solid Films 117, 251–260.(1984)
[70] Z. ?erno?ek, E.?., M. Frumar, K. Swiatek, A non-dangling bond model of paramagnetic defects in Ge-S glasses. Phys. Status Solidi B 192(1), 181–192.(1995)
[71] D.D. Vaughn 2nd., R.J.P., M.A. Hickner, R.E. Schaak, Single-crystal colloidal nanosheets of GeS and GeSe. J. Am.Chem. Soc. 132, 15170–15172.(2010)
[72] A. Bytchkov, G.J.C., S. Kohara, C.J. Benmore, D.L.Price et al., Unraveling the atomic structure of Ge-rich sulfide glasses. Phys. Chem. Chem. Phys. 15, 8487-8494.(2013)
[73] S. Chakraborty, P.B., Topological origin of fragility,network adaptation, and rigidity and stress transitions in especially homogenized nonstoichiometric binary GexS100–x glasses. J. Phys. Chem. B 118, 2249–2263.(2014)
[74] A. Bouzid, S.L.R., G. Ori, M. Boero, C. Massobrio, Origin of structural analogies and differences between theatomic structures of GeSe4 and GeS4 glasses: a first principles study. J. Chem. Phys. 143, 034504.(2015)
[75] Kan, H., Electronic structure of amorphous germanium sulphides. J. Non Cryst. Solids 312–314, 566–569.(2002)
[76] D. Foix, H.M., A. Pradel, M. Ribes, D. Gonbeau, XPS valence band spectra and theoretical calculations for investigations on thiogermanate and thiosilicate glasses. Chem. Phys. 323, 606–616.(2006)
[77] Romanyuk, R.R., Charge carrier transfer in amorphous (GeS)1-xBix films. Chem. Met. Alloys 6, 200–204.(2013)
[78] Y. Chen, R.W., X. Shen, J. Wang, T. Xu, New methods versus old questions: crystallization kinetics of S, Se, and Te. Cryst. Growth Des. 19, 1103–1110.(2019).
[79] S. Jia, H.L., T. Gotoh, C. Longeaud, B. Zhang et al, Ultrahigh drive current and large selectivity in GeS selector. Nat. Commun. 11, 4636.(2020)
[80] M. Kim, Y.K., M. Lee, S.M. Hong, H.K. Kim et al., PEALD of Ge1? xSx amorphous chalcogenide alloys for OTS applications. J. Mater. Chem. C 9, 6006–6013.(2021)
[81] F.A. Blum, B.C.D., Properties of the group VI B elements under pressure. II. semiconductor-to-metal transition of tellurium. Phys. Rev. 137, A1410–A1417.(1965)
[82] J. Shen, S.J., N. Shi, Q. Ge, T. Gotoh et al., Elemental electrical switch enabling phase segregation-free operation. Science 374, 1390–1394.(2021)
[83] C. Kim, N.H., J. Yang, S. Oh, J. Yeo et al., Atomic layer deposition route to scalable, electronic-grade van der waals Te thin films. ACS Nano 17, 15776–15786.(2023)
[84] M. Anbarasu, M.W., G. Bruns, M. Salinga, M. Wuttig, Nanosecond threshold switching of GeTe6 cells and their potential as selector devices. Appl. Phys. Lett. 100(14),143505.(2012)
[85] A. Velea, K.O., W. Devulder, J. Dumortier, J. Fan et al., Te-based chalcogenide materials for selector applications. Sci. Rep. 7, 8103.(2017)
[86] D. Garbin, W.D., R. Degraeve, G.L. Donadio, S.Clima et al, Composition optimization and device understanding of Si-Ge-As-Te ovonic threshold switch selector with excellent endurance. in 2019 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA.35.1.1–35.1.4.(2019)
[87] C.H. Wu, C.M.L., Y.S. Chen, H.Y.Lee, E. Ambrosi et al, Low-voltage (~ 1.3V), arsenic free threshold type selector with ultra high endurance (> 1011)for high density 1S1R memory array. in 2021 Symposium on VLSI Technology.Kyoto, Japan. 1–2.(2021)
[88] L. Wang, W.C., D. He, Q. Lin, D. Wan et al, Performance improvement of GeTex-based ovonic threshold switching selector by C doping. IEEE Electron Device Lett. 42, 688–691.(2021)
[89] Zhao, Z., et al., Chalcogenide Ovonic Threshold Switching Selector. Nanomicro Lett, 2024. 16(1): p. 81.(2024)
[90] Midya, R et al., Anatomy of Ag/Hafnia-Based Selectors with 10(10) Nonlinearity. Adv Mater, 2017. 29(12).(2017)
[91] E. Zhu, Y.L., X. Sun, G. Yin, Q. Jiao et al., Correlation between thermo-mechanical properties and network structure in GexS100– x chalcogenide glasses. J. Non Cryst. Solids X 1, 100015.(2019)
[92] Mead, C.A., Energy gap in sulphur. Phys. Lett. 11, 212–213 (1964), 1964.
[93] J. Malek, L.T., J. Klikorka, Crystallization kinetics of GexS1-x glasses. J. Therm. Anal. 33, 667–672.(1988)
[94] M. Chen, K.A.R., R.W. Barton, Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502–504.(1986)
[95] A. Deneuville, J.P.K., P. Gerard, A. Mini, DC electrical, optical and photoelectrical properties of GexTe1- x amorphous thin films. Solid State Commun. 14, 341–346.(1974)
[96] Zavabeti, A., et al., High-mobility p-type semiconducting two-dimensional β-TeO2. Nature Electronics, 4(4): p. 277-283.(2021)
[97] Geerlings, P., F. De Proft, and W. Langenaeker, Conceptual Density Functional Theory. Chemical Reviews, 103(5): p. 1793-1874.(2003)
[98] Lazzeri, M., et al, Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Physical Review B, 78(8).(2008)
[99] Kresse, G.a.J.F., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16): p. 11169-11186.(1996)
[100] Gu, R., et al., Structural features of chalcogenide glass SiTe: An ovonic threshold switching material. APL Materials, 2021. 9(8).(2021)
[101] Order. https://order.readthedocs.io/en/latest /(accessed: November 2024)
[102] pyIPR. https://github.com/lhycms/pyIPR /(accessed: November 2024)
[103]Paier, J., et al., Screened hybrid density functionals applied to solids. J Chem Phys, 124(15): p. 154709.(2006)
[104] Dronskowski, R.a.P.E.B., Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. The Journal of Physical Chemistry, 97(33): p. 8617-8624.(2022)
指導教授 唐英瓚 唐英讚 審核日期 2024-11-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明