參考文獻 |
[1]Servalli, G., A 45nm generation Phase Change Memory technology. 2009 IEEE International Electron Devices Meeting (IEDM).(2009)
[2]G.W. Burr, K.V., R.S.Shenoy,A. Padilla, M. Bright-Sky et al., Large-scale(512kbit) integration of multilayerready access-devices based on mixed-ionic-electronic conduction (MIEC) at 100% yield. in 2012 Symposium on VLSI Technology (VLSIT). Honolulu, HI, USA. 41–42.(2012)
[3]Kumar, S., J.P. Strachan, and R.S. Williams, Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature, 2017. 548(7667): p. 318-321.(2017)
[4]D. Kau, S.T., I.V. Karpov, R. Dodge, B. Klehn et al., A stackable cross point Phase Change Memory. in 2009 IEEE International Electron Devices Meeting (IEDM). Baltimore, MD, USA. 1–4.(2009)
[5]W.R. Northover, A.D.P.(1964)
[6]Dennard, R.H.(1967)
[7]Ovshinsky, S.R. (1966)
[8]Ovshinsky, S.R., Reversible Electrical Switching Phenomena in Disordered Structures. Physical Review Letters, 1968. 21(20): p. 1450-1453.(1968)
[9]Y. Choi, I.S., M.-H. Park, H. Chung, S. Chang et al., A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth. in 2012 IEEE International Solid-State Circuits Conference.San Francisco, CA, USA. 46–48.(2012)
[10]Adler, D., et al., Threshold switching in chalcogenide-glass thin films. Journal of Applied Physics, 1980. 51(6): p. 3289-3309.(1980)
[11]Redaelli, A., et al., Threshold switching and phase transition numerical models for phase change memory simulations. Journal of Applied Physics, 2008. 103(11).(2008)
[12]Kroll, D.M., Theory of electrical instabilities of mixed electronic and thermal origin. II. Switching as a nucleation process. Physical Review B, 1975. 11(10): p. 3814-3821.(1975)
[13]Karpov, V.G., et al., Field-induced nucleation in phase change memory. Physical Review B, 2008. 78(5).(2008)
[14]Karpov, V.G., et al., Nucleation switching in phase change memory. Applied Physics Letters, 2007. 90(12).(2007)
[15]Karpov, I.V., et al., Fundamental drift of parameters in chalcogenide phase change memory. Journal of Applied Physics, 2007. 102(12).(2007)
[16]Buscemi, F., et al., A HydroDynamic Model for Trap-Assisted Tunneling Conduction in Ovonic Devices. IEEE Transactions on Electron Devices, 2023. 70(4): p. 1808-1814.(2023)
[17]N. Saxena, A.M., Ultrafast threshold switching dynamics in phase-change materials. Phys. Status Solidi RRL 16(9), 2200101.(2022)
[18]Nardone, M., et al., Electrical conduction in chalcogenide glasses of phase change memory. Journal of Applied Physics, 2012. 112(7).(2012)
[19]D.M. Kroll, Theory of electrical instabilities of mixed electronic and thermal origin. Phys. Rev. B 9, 1669–1706.(1974)
[20]Kaplan, T. and D. Adler, Thermal Effects in Amorphous-Semiconductor Switching. Applied Physics Letters, 1971. 19(10): p. 418-420.(1971)
[21]Kaplan, T. and D. Adler, Electrothermal switching in amorphous semiconductors. Journal of Non-Crystalline Solids, 1972. 8-10: p. 538-543.(1972)
[22]Kaplan, T., et al., Thermally Induced Negative Resistance in Si-Doped YIG. Applied Physics Letters, 1972. 20(11): p. 439-441.(1972)
[23]Wimmer, M. and M. Salinga, The gradual nature of threshold switching. New Journal of Physics, 2014. 16(11).(2014)
[24]Lowrey, S.L.a.T., OUM - A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications. International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224). Washington, DC, USA.36.5.1–36.5.4.(2001)
[25]Owen, A.E. and J.M. Robertson, Electronic conduction and switching in chalcogenide glasses. IEEE Transactions on Electron Devices, 1973. 20(2): p. 105-122.(1973)
[26]Vezzoli, G.C., P.J. Walsh, and L. William Doremus, Threshold switching and the on-state in non-crystalline chalcogenide semiconductors. Journal of Non-Crystalline Solids, 1975. 18(3): p. 333-373.(1975)
[27]Fantini, P., et al., Experimental investigation of transport properties in chalcogenide materials through 1∕f noise measurements. Applied Physics Letters, 2006. 88(26).(2006)
[28]Ielmini, D. and Y. Zhang, Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices. Journal of Applied Physics, 2007. 102(5).(2007)
[29]Ielmini, D., Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Physical Review B, 2008. 78(3).(2008)
[30]Fantini, P., et al., Threshold Switching by Bipolar Avalanche Multiplication in Ovonic Chalcogenide Glasses. Advanced Electronic Materials, 2023. 9(7).(2023)
[31]Clima, S., et al., Ovonic Threshold Switch Chalcogenides: Connecting the First-Principles Electronic Structure to Selector Device Parameters. ACS Applied Electronic Materials, 2022. 5(1): p. 461-469.(2022)
[32]Kastner, M., D. Adler, and H. Fritzsche, Valence-Alternation Model for Localized Gap States in Lone-Pair Semiconductors. Physical Review Letters, 1976. 37(22): p. 1504-1507.(1976)
[33]Emin, D., Current-driven threshold switching of a small polaron semiconductor to a metastable conductor. Physical Review B, 2006. 74(3).(2006)
[34]Degraeve, R., et al., Modeling and spectroscopy of ovonic threshold switching defects, in 2021 IEEE International Reliability Physics Symposium (IRPS). 2021. p.1-5.(2021)
[35]Mott, N.F., Conduction in non-crystalline materials. Philosophical Magazine, 1969. 19(160): p. 835-852.(1969)
[36]Clima, S., et al., Ovonic Threshold?Switching GexSey Chalcogenide Materials: Stoichiometry, Trap Nature, and Material Relaxation from First Principles. physica status solidi (RRL) – Rapid Research Letters, 2020. 14(5).(2020)
[37]Clima, S., et al., Material relaxation in chalcogenide OTS SELECTOR materials. Microelectronic Engineering, 2019. 215.(2019)
[38] S. Clima et al., Atomistic investigation of the electronic structure, thermal properties and conduction defects in Ge-rich GexSe1?x materials for selector applications. 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 4.1.1-4.1.4.(2017)
[39]Anderson, P.W., Model for the Electronic Structure of Amorphous Semiconductors. Physical Review Letters, 1975. 34(15): p. 953-955.(1975)
[40]Raty, J.-Y. and P. Noe, Ovonic Threshold Switching in Se?Rich GexSe1?x Glasses from an Atomistic Point of View: The Crucial Role of the Metavalent Bonding Mechanism. physica status solidi (RRL) – Rapid Research Letters, 2020. 14(5).(2020)
[41]Chandler, D. and J.P. Garrahan, Dynamics on the way to forming glass: bubbles in space-time. Annu Rev Phys Chem, 2010. 61: p. 191-217.(2010)
[42]Raty, J.Y., et al., A Quantum-Mechanical Map for Bonding and Properties in Solids. Adv Mater, 2019. 31(3): p. e1806280.(2019)
[43]Zhu, M., et al., Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding. Adv Mater, 2018. 30(18): p. e1706735.(2018)
[44]Shportko, K., et al., Resonant bonding in crystalline phase-change materials. Nat Mater, 2008. 7(8): p. 653-8.(2008)
[45]Noe, P., et al., Toward ultimate nonvolatile resistive memories: The mechanism behind ovonic threshold switching revealed. Sci Adv, 2020. 6(9): p. eaay2830.(2020)
[46]Matsubayashi, D., et al., OTS Physics-based Screening for Environment-friendly Selector Materials, in 2022 International Electron Devices Meeting (IEDM). 2022. p. 8.6.1-8.6.4.(2022)
[47]Slassi, A., et al., Device?to?Materials Pathway for Electron Traps Detection in Amorphous GeSe?Based Selectors. Advanced Electronic Materials, 2023. 9(4).(2023)
[48]Pirovano, A., et al., Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. IEEE Transactions on Electron Devices, 2004. 51(5): p. 714-719.(2004)
[49]Raty, J.Y., et al., Aging mechanisms in amorphous phase-change materials. Nat Commun, 2015. 6: p. 7467.(2015)
[50]Zhu, M., K. Ren, and Z. Song, Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bulletin, 2019. 44(09): p. 715-720.(2019)
[51]Calarco, R. and F. Arciprete, Keep it simple and switch to pure tellurium. Science, 2021. 374(6573): p. 1321-1322.(2021)
[52]Park, J., et al., Hybrid Selector With Excellent Selectivity and Fast Switching Speed for X-Point Memory Array. IEEE Electron Device Letters, 2018. 39(8): p. 1171-1174.(2018)
[53] A. Verdy et al., Improved Electrical Performance Thanks to Sb and N Doping in Se-Rich GeSe-Based OTS Selector Devices. 2017 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 2017, pp. 1-4.(2017)
[54]N. S. Avasarala et al., Doped GeSe materials for selector applications. 2017 47th European Solid-State Device Research Conference (ESSDERC), Leuven, Belgium, 2017, pp. 168-171.(2017)
[55]Iwasaki, H., et al., Completely Erasable Phase Change Optical Disk. Japanese Journal of Applied Physics, 1992. 31(2S).(1992)
[56]Wong, H.S.P., et al., Metal–Oxide RRAM. Proceedings of the IEEE, 2012. 100(6): p. 1951-1970.(2012)
[57]Ambrosi, E., et al., Reliable Low Voltage Selector Device Technology Based on Robust SiNGeCTe Arsenic-Free Chalcogenide. IEEE Electron Device Letters, 2022. 43(10): p. 1673-1676.(2022)
[58]Wang, L., et al., Thermally Stable and High-Speed Ge-Te Based Ovonic Threshold Switching Selector With a Ge Intercalated Structure. IEEE Electron Device Letters, 2023. 44(7): p. 1096-1099.(2023)
[59]L. Wang, Z.L., Z. Zhang, J. Chen, J. Wen et al., A refresh operation method for solving thermal stability issues an improving endurance of ovonic threshold switching selectors. J. Mater. Chem. C 11, 5411–5421.(2023)
[60]M. Xu, M.X., X. Miao, Deep machine learning unravels the structural origin of mid-gap states in chalcogenide glass for high-density memory integration. InfoMat 4, e12315.(2022)
[61]A. Verdy, G.N., M. Bernard, S. Chevalliez, N. Castellani et al., Carbon electrode for Ge-Se-Sb based OTS selector for ultra low leakage current and outstanding endurance. 2018 IEEE International Reliability Physics Symposium (IRPS). 6D.4–1–6D.4-6.(2018)
[62]X. Li, Z.Y., S. Lv, S. Song, Z. Song, Extended endurance performance and reduced threshold voltage by doping Si in GeSe-based ovonic threshold switching selectors. Thin Solid Films 734, 138837.(2021)
[63]E.P. O’Reilly, J.R., M.J. Kelly, The structure of amorphous GeSe and GeTe. Solid State Commun. 38, 565–568.(1981)
[64]G.I. Kim, J.S., Time of flight measurement of carrier mobility in GexSe1-x glasses. Jpn. J. Appl. Phys. 17, 1789–1794.(1978)
[65]T.T. Nang, M.O., T. Matsushita, S. Yokota, A. Suzuki, Electrical and optical properties of GexSe1-x amorphous thin films. Jpn. J. Appl. Phys. 15, 849–853.(1976)
[66]O. Uemura, Y.S., T. Satow, The amorphous structure of the Ge-Se system. Phys. Stat. Sol. 26(1), 99–103.(1974)
[67] N. S. Avasarala et al., Half-threshold bias Ioff reduction down to nA range of thermally and electrically stable high-performance integrated OTS selector, obtained by Se enrichment and N-doping of thin GeSe layers. 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2018, pp. 209-210.(2018)
[68] S.-D. Kim, H.-W.A., S.Y. Shin, D.S. Jeong, S.H. Son et al., Effect of Ge concentration in GexSe1-x chalcogenide glass on the electronic structures and the characteristics of ovonic threshold switching (OTS) devices. ECS Solid State Lett. 2, Q75–Q77.(2013)
[69] K. Tanaka, Y.K., A. Odajima, Physical properties and photoinduced changes of amorphous Ge–S films. Thin Solid Films 117, 251–260.(1984)
[70] Z. ?erno?ek, E.?., M. Frumar, K. Swiatek, A non-dangling bond model of paramagnetic defects in Ge-S glasses. Phys. Status Solidi B 192(1), 181–192.(1995)
[71] D.D. Vaughn 2nd., R.J.P., M.A. Hickner, R.E. Schaak, Single-crystal colloidal nanosheets of GeS and GeSe. J. Am.Chem. Soc. 132, 15170–15172.(2010)
[72] A. Bytchkov, G.J.C., S. Kohara, C.J. Benmore, D.L.Price et al., Unraveling the atomic structure of Ge-rich sulfide glasses. Phys. Chem. Chem. Phys. 15, 8487-8494.(2013)
[73] S. Chakraborty, P.B., Topological origin of fragility,network adaptation, and rigidity and stress transitions in especially homogenized nonstoichiometric binary GexS100–x glasses. J. Phys. Chem. B 118, 2249–2263.(2014)
[74] A. Bouzid, S.L.R., G. Ori, M. Boero, C. Massobrio, Origin of structural analogies and differences between theatomic structures of GeSe4 and GeS4 glasses: a first principles study. J. Chem. Phys. 143, 034504.(2015)
[75] Kan, H., Electronic structure of amorphous germanium sulphides. J. Non Cryst. Solids 312–314, 566–569.(2002)
[76] D. Foix, H.M., A. Pradel, M. Ribes, D. Gonbeau, XPS valence band spectra and theoretical calculations for investigations on thiogermanate and thiosilicate glasses. Chem. Phys. 323, 606–616.(2006)
[77] Romanyuk, R.R., Charge carrier transfer in amorphous (GeS)1-xBix films. Chem. Met. Alloys 6, 200–204.(2013)
[78] Y. Chen, R.W., X. Shen, J. Wang, T. Xu, New methods versus old questions: crystallization kinetics of S, Se, and Te. Cryst. Growth Des. 19, 1103–1110.(2019).
[79] S. Jia, H.L., T. Gotoh, C. Longeaud, B. Zhang et al, Ultrahigh drive current and large selectivity in GeS selector. Nat. Commun. 11, 4636.(2020)
[80] M. Kim, Y.K., M. Lee, S.M. Hong, H.K. Kim et al., PEALD of Ge1? xSx amorphous chalcogenide alloys for OTS applications. J. Mater. Chem. C 9, 6006–6013.(2021)
[81] F.A. Blum, B.C.D., Properties of the group VI B elements under pressure. II. semiconductor-to-metal transition of tellurium. Phys. Rev. 137, A1410–A1417.(1965)
[82] J. Shen, S.J., N. Shi, Q. Ge, T. Gotoh et al., Elemental electrical switch enabling phase segregation-free operation. Science 374, 1390–1394.(2021)
[83] C. Kim, N.H., J. Yang, S. Oh, J. Yeo et al., Atomic layer deposition route to scalable, electronic-grade van der waals Te thin films. ACS Nano 17, 15776–15786.(2023)
[84] M. Anbarasu, M.W., G. Bruns, M. Salinga, M. Wuttig, Nanosecond threshold switching of GeTe6 cells and their potential as selector devices. Appl. Phys. Lett. 100(14),143505.(2012)
[85] A. Velea, K.O., W. Devulder, J. Dumortier, J. Fan et al., Te-based chalcogenide materials for selector applications. Sci. Rep. 7, 8103.(2017)
[86] D. Garbin, W.D., R. Degraeve, G.L. Donadio, S.Clima et al, Composition optimization and device understanding of Si-Ge-As-Te ovonic threshold switch selector with excellent endurance. in 2019 IEEE International Electron Devices Meeting (IEDM). San Francisco, CA, USA.35.1.1–35.1.4.(2019)
[87] C.H. Wu, C.M.L., Y.S. Chen, H.Y.Lee, E. Ambrosi et al, Low-voltage (~ 1.3V), arsenic free threshold type selector with ultra high endurance (> 1011)for high density 1S1R memory array. in 2021 Symposium on VLSI Technology.Kyoto, Japan. 1–2.(2021)
[88] L. Wang, W.C., D. He, Q. Lin, D. Wan et al, Performance improvement of GeTex-based ovonic threshold switching selector by C doping. IEEE Electron Device Lett. 42, 688–691.(2021)
[89] Zhao, Z., et al., Chalcogenide Ovonic Threshold Switching Selector. Nanomicro Lett, 2024. 16(1): p. 81.(2024)
[90] Midya, R et al., Anatomy of Ag/Hafnia-Based Selectors with 10(10) Nonlinearity. Adv Mater, 2017. 29(12).(2017)
[91] E. Zhu, Y.L., X. Sun, G. Yin, Q. Jiao et al., Correlation between thermo-mechanical properties and network structure in GexS100– x chalcogenide glasses. J. Non Cryst. Solids X 1, 100015.(2019)
[92] Mead, C.A., Energy gap in sulphur. Phys. Lett. 11, 212–213 (1964), 1964.
[93] J. Malek, L.T., J. Klikorka, Crystallization kinetics of GexS1-x glasses. J. Therm. Anal. 33, 667–672.(1988)
[94] M. Chen, K.A.R., R.W. Barton, Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 49, 502–504.(1986)
[95] A. Deneuville, J.P.K., P. Gerard, A. Mini, DC electrical, optical and photoelectrical properties of GexTe1- x amorphous thin films. Solid State Commun. 14, 341–346.(1974)
[96] Zavabeti, A., et al., High-mobility p-type semiconducting two-dimensional β-TeO2. Nature Electronics, 4(4): p. 277-283.(2021)
[97] Geerlings, P., F. De Proft, and W. Langenaeker, Conceptual Density Functional Theory. Chemical Reviews, 103(5): p. 1793-1874.(2003)
[98] Lazzeri, M., et al, Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Physical Review B, 78(8).(2008)
[99] Kresse, G.a.J.F., Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16): p. 11169-11186.(1996)
[100] Gu, R., et al., Structural features of chalcogenide glass SiTe: An ovonic threshold switching material. APL Materials, 2021. 9(8).(2021)
[101] Order. https://order.readthedocs.io/en/latest /(accessed: November 2024)
[102] pyIPR. https://github.com/lhycms/pyIPR /(accessed: November 2024)
[103]Paier, J., et al., Screened hybrid density functionals applied to solids. J Chem Phys, 124(15): p. 154709.(2006)
[104] Dronskowski, R.a.P.E.B., Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. The Journal of Physical Chemistry, 97(33): p. 8617-8624.(2022) |