參考文獻 |
[1] Zhao, W., & Prenat, G. (2015). Spintronics-Based Computing. Berlin: Springer International Publishing.
[2] Zhao, W., Zhao, X., Zhang, B., et al. (2016). Failure Analysis in Magnetic Tunnel Junction Nanopillar with Interfacial Perpendicular Magnetic Anisotropy. Materials (Basel), 9(1), 41.
[3] Wang, Y., et al. (2014). Compact model of magnetic tunnel junction with stochastic spin transfer torque switching for reliability analyses. Microelectronics Reliability, 54(9-10), 1774-1778.
[4] Wang, Y., et al. (2016). Compact model of dielectric breakdown in spin-transfer torque magnetic tunnel junction. IEEE Transactions on Electron Devices, 63(4), 1762-1767.
[5] Radhakrishnan, G., Yoon, Y., & Sachdev, M. (2020). Monitoring Aging Defects in STT-MRAMs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(12), 4645-4656.
[6] Khvalkovskiy, A.V., et al. (2013). Basic principles of STT-MRAM cell operation in memory arrays. Journal of Physics D: Applied Physics, 46, 1-7.
[7] Oliver, B., et al. (2004). Two breakdown mechanisms in ultrathin alumina barrier magnetic tunnel junctions. Journal of Applied Physics, 95(3), 1315-1322.
[8] Hua, L., et al. (2018). Barrier breakdown mechanism in nano-scale perpendicular magnetic tunnel junctions with ultrathin MgO barrier. AIP Advances, 8(5), 055908.
[9] Panagopoulos, G., Augustine, C., & Roy, K. (2011). Modeling of dielectric breakdown-induced time-dependent STT-MRAM performance degradation. In 69th Device Research Conference (pp. 125-126).
[10] Ho, C.-H., Panagopoulos, G.D., Kim, S.Y., Kim, Y., Lee, D., & Roy, K. (2013). A physical model to predict STT-MRAM performance degradation induced by TDDB. In 71st Device Research Conference (pp. 59-60).
[11] Wu, L., et al. (2019). Pinhole Defect Characterization and Fault Modeling for STT-MRAM Testing. In 2019 IEEE European Test Symposium (ETS) (pp. 1-6).
[12] Joshi, V.K., Barla, P., Bhat, S., & Kaushik, B.K. (2020). From MTJ Device to Hybrid CMOS/MTJ Circuits: A Review. IEEE Access, 8, 194105-194146.
[13] Wu, L., Taouil, M., Rao, S., Marinissen, E.J., & Hamdioui, S. (2018). Electrical Modeling of STT-MRAM Defects. In 2018 IEEE International Test Conference (ITC) (pp. 1-10).
[14] McPherson, J.W., & Mogul, H.C. (1998). Underlying physics of the thermochemical E model in SiO2 describing low-field time-dependent dielectric breakdown in thin films. Journal of Applied Physics, 84(3), 1513-1523.
[15] Girard, P., Cheng, Y., Virazel, A., Zhao, W., Bishnoi, R., & Tahoori, M.B. (2021). A Survey of Test and Reliability Solutions for Magnetic Random Access Memories. Proceedings of the IEEE, 109(2), 149-169.
[16] Lin, I.-C., Law, Y.K., & Xie, Y. (2018). Mitigating BTI-Induced Degradation in STT-MRAM Sensing Schemes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(1), 50-62.
[17] Van Beek, S., et al. (2015). Four point probe ramped voltage stress as an efficient method to understand breakdown of STT-MRAM MgO tunnel junctions. In 2015 IEEE International Reliability Physics Symposium (pp. MY.4.1-MY.4.6).
[18] Zhou, Y., Cai, H., Zhang, M., Naviner, L.A.B., & Yang, J. (2020). A novel BIST for monitoring aging/temperature by self-triggered scheme to improve the reliability of STT-MRAM. Microelectronics Reliability, 114, 113735.
[19] Deak, J.G., Daughton, J.M., & Pohm, A.V. (2006). Effect of Resistance-Area-Product and Thermal Environment on Writing of Magneto-Thermal MRAM. IEEE Transactions on Magnetics, 42(10), 2721-2723.
[20] Liand, S., & Jiang, Y. (2022). Nanoscale Thermal Transport Model of Magnetic Tunnel Junction (MTJ) Device for STT-MRAM. IEEE Transactions on Magnetics, 58(8), 1-6, Art no. 3401206.
[21] Deschenes, A., Muneer, S., Akbulut, M., Gokirmak, A., & Silva, H. (2016). Analysis of self-heating of thermally assisted spin-transfer torque magnetic random access memory. Beilstein Journal of Nanotechnology, 7, 1676-1683.
[22] Teso, B., Siritaratiwat, A., & Surawanitkun, C. (2018). Different Effect of Temperature Increment on CoFeB/MgO Based Single and Double Barrier Magnetic Tunnel Junctions during Switching Process in STT-MRAM. In 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 616-619).
[23] Zhang, X., et al. (2020). Life-time degradation of STT-MRAM by self-heating effect with TDDB model. Solid-State Electronics, 173, 107878.
[24] Chen, Y.-G., Huang, P.-Y., & Li, J.-F. (2023). An On-line Aging Detection and Tolerance Framework for Improving Reliability of STT-MRAMs. In 2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC) (pp. 1-6).
[25] Jain, S., Ranjan, A., Roy, K., & Raghunathan, A. (2018). Computing in Memory With Spin-Transfer Torque Magnetic RAM. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(3), 470-483.
[26] Cai, H., et al. (2023). 33.4 A 28nm 2Mb STT-MRAM Computing-in-Memory Macro with a Refined Bit-Cell and 22.4 - 41.5TOPS/W for AI Inference. In 2023 IEEE International Solid-State Circuits Conference (ISSCC) (pp. 500-502).
[27] Wang, C., Wang, Z., Wang, G., Zhang, Y., & Zhao, W. (2021). Design of an Area-Efficient Computing in Memory Platform Based on STT-MRAM. IEEE Transactions on Magnetics, 57(2), 1-4, Art no. 3400504.
[28] Cai, H., et al. (2022). Proposal of Analog In-Memory Computing With Magnified Tunnel Magnetoresistance Ratio and Universal STT-MRAM Cell. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(4), 1519-1531.
[29] Na, T., Kang, S.H., & Jung, S.-O. (2021). STT-MRAM Sensing: A Review. IEEE Transactions on Circuits and Systems II: Express Briefs, 68(1), 12-18.
[30] Pham, T.-N., Trinh, Q.-K., Chang, I.-J., & Alioto, M. (2022). STT-BNN: A Novel STT-MRAM In-Memory Computing Macro for Binary Neural Networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 12(2), 569-579. |