博碩士論文 111521052 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.217.35.130
姓名 徐浩軒(Hao-Hsuan Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於腦電圖信號的模糊類神經控制 氣動康復機器人系統
(Designing an EEG Signal-Driven Fuzzy Neural Network-Controlled Pneumatic Exoskeleton for Upper Limb Rehabilitation)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 提升上肢運動缺陷的康復效果是康復醫療的一個重要目標,特別是針對嚴重
殘疾患者的康復治療。近期研究顯示,利用上肢外骨骼機器人進行重複性訓練能顯著提升中風患者的運動控制能力,並改善康復結果。與傳統使用電動馬達或液壓缸作為執行器的外骨骼系統相比,氣動肌肉執行器(Pneumatic Muscle Actuator, PMA)因其輕量化、低功耗、高柔性與適應性強等特性,成為更適合於醫療輔助設備的選擇。然而,PMA 在充氣與放氣階段表現出非線性遲滯現象,受摩擦、材料彈性及內部氣壓動態影響,使得 PMA 難以達到精確的控制效果。本研究開發了一種由腦波控制的氣動外骨骼系統,以實現癱瘓患者的主動康復訓練。外骨骼系統利用腦波信號驅動,透過腦-機介面(Brain-Computer Interface, BCI)系統解讀
患者的運動意圖。這些意圖通過模糊神經網絡(Fuzzy Neural Networks, FNN)轉換為控制信號,用以驅動 PMA 進行外骨骼的抬升和下降。為應對 PMA 在充氣與放氣階段的非線性特性,本研究提出雙路模糊神經網絡(Dual-Path FNN, DFNN),分別優化外骨骼的抬升與下降的控制策略,並進行多負載條件下的性能測試。在實驗中,我們比較了 DFNN 與單路模糊神經網絡(Single-Path FNN, SFNN)的控制性能。結果顯示,DFNN 在不同負載(無負載、1 公斤、2 公斤)條件下均表現出更低的誤差、更穩定的反應速度及更好的控制精度。例如,在 1公斤負載下,DFNN 的平均角度誤差為 1.23°,而 SFNN 則為 3.26°。此外,我們
進一步測試了外骨骼系統在腦波控制模式下的實用性,三位受試者通過腦波意圖成功驅動外骨骼完成手臂的抬升與放下動作。本研究表明,外骨骼系統在腦波解讀與運動執行方面均展現出穩定性與準確性,為未來基於腦波控制的外骨骼系統研究奠定了基礎。
摘要(英) Improving rehabilitation outcomes for upper limb motor deficits is a critical goal in
medical rehabilitation, especially for patients with severe disabilities. Recent studies have
demonstrated that repetitive training using upper limb exoskeleton robots significantly
enhances motor control and rehabilitation outcomes in stroke patients. Compared to
traditional exoskeleton systems that use electric motors or hydraulic actuators, pneumatic
muscle actuators (PMAs) stand out as a more suitable option for medical assistive devices
due to their lightweight design, low power consumption, high flexibility, and adaptability.
However, the inherent nonlinear hysteresis behavior of PMAs, caused by friction, material
elasticity, and internal air pressure dynamics during inflation and deflation, poses challenges
for precise control.
This study developed a brainwave-controlled pneumatic exoskeleton system aimed at
enabling active rehabilitation training for paralyzed patients. The system employs brainwave
signals as control inputs, leveraging a brain-computer interface (BCI) to interpret patients’
motor intentions. These intentions are translated into control signals via fuzzy neural
networks (FNNs) to drive the PMA for lifting and lowering the exoskeleton. To address the
nonlinear characteristics of PMAs during inflation and deflation, this study proposed a dualpath fuzzy neural network (DFNN) architecture, which optimizes the control strategies
separately for lifting and lowering motions. The system was evaluated under various load
conditions to assess its performance.
In the experiments, the performance of the DFNN was compared with a single-path
fuzzy neural network (SFNN). Results showed that the DFNN exhibited lower errors, faster
response times, and higher control precision across different load conditions (unloaded, 1 kg,
and 2 kg). For example, under a 1 kg load, the average angular error of the DFNN was 1.23°,
compared to 3.26° for the SFNN. Furthermore, the practical usability of the exoskeleton
iii
system under brainwave control was tested. Three participants successfully drove the
exoskeleton to perform arm-lifting and lowering tasks using motor imagery-based brainwave
intentions.
This study demonstrates that the exoskeleton system provides stability and accuracy in
both brainwave decoding and motion execution. The results highlight the potential of using a
brainwave-controlled pneumatic exoskeleton for rehabilitation and lay the foundation for
future advancements in brainwave-driven exoskeleton systems.
關鍵字(中) ★ 深度學習
★ 模糊神經網絡
★ 氣動外骨骼
★ 康復系統
關鍵字(英) ★ Deep learning
★ Fuzzy neural network
★ Pneumatic exoskeleton
★ Rehabilitation system
論文目次 中文摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 論文章節結構 4
第二章 研究設計與方法 5
2-1 系統架構 5
2-1-1 實驗設備介紹 6
2-1-2 腦波分類系統 13
2-1-3 氣動肌肉外骨骼系統 14
2-2 康復系統實驗流程 15
2-3 EEG資料處理以及模型架構 16
2-4 FNN模型架構 20
2-5 基於氣動肌肉外骨骼特性的DFNN 23
第三章 實驗結果與討論 26
3-1 腦波模型實驗結果 26
3-2 DFNN實驗結果 28
3-2-1 DFNN訓練過程 28
3-2-2 DFNN方波響應 29
3-2-3 DFNN穩態軌跡控制 30
3-3 受試者參與實驗結果 33
3-4 實驗結果討論 34
第四章 結論與未來展望 36
第五章 參考文獻 37
參考文獻 [1] W. Xia et al., "Cortical mapping of active and passive upper limb training in stroke patients and healthy people: A functional near-infrared spectroscopy study," Brain Research, vol. 1788, p. 147935, 2022.
[2] J. Hu, Y. Zhuang, Q. Meng, and H. Yu, "Active training control method for rehabilitation robot based on fuzzy adaptive impedance adjustment," Machines, vol. 11, no. 5, p. 565, 2023.
[3] J. Son, J. Ryu, S. Ahn, E. J. Kim, J. A. Lee, and Y. Kim, "Effects of 4?Week Intensive Active?Resistive Training with an EMG?Based Exoskeleton Robot on Muscle Strength in Older People: A Pilot Study," BioMed research international, vol. 2016, no. 1, p. 1256958, 2016.
[4] G. Yin et al., "Processing surface EMG signals for exoskeleton motion control," Frontiers in Neurorobotics, vol. 14, p. 40, 2020.
[5] N. A. Bhagat et al., "Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors," Frontiers in neuroscience, vol. 10, p. 122, 2016.
[6] G. Yu, J. Wang, W. Chen, and J. Zhang, "EEG-based brain-controlled lower extremity exoskeleton rehabilitation robot," in 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), 2017: IEEE, pp. 763-767.
[7] U. Onen, F. M. Botsal?, M. Kalyoncu, M. T?nk?r, N. Y?lmaz, and Y. ?ahin, "Design and actuator selection of a lower extremity exoskeleton," IEEE/ASME Transactions on mechatronics, vol. 19, no. 2, pp. 623-632, 2013.
[8] S. Glowinski, T. Krzyzynski, A. Bryndal, and I. Maciejewski, "A kinematic model of a humanoid lower limb exoskeleton with hydraulic actuators," Sensors, vol. 20, no. 21, p. 6116, 2020.
[9] H. K. Yap, J. H. Lim, F. Nasrallah, J. C. Goh, and R. C. Yeow, "A soft exoskeleton for hand assistive and rehabilitation application using pneumatic actuators with variable stiffness," in 2015 IEEE international conference on robotics and automation (ICRA), 2015: IEEE, pp. 4967-4972.
[10] W. Zhao and A. Song, "Active motion control of a knee exoskeleton driven by antagonistic pneumatic muscle actuators," in Actuators, 2020, vol. 9, no. 4: MDPI, p. 134.
[11] Y. Cao and J. Huang, "Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton," IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 6, pp. 1478-1488, 2020.
[12] V. Nazari and B. Surgenor, "Improved position tracking performance of a pneumatic actuator using a fuzzy logic controller with velocity, system lag and friction compensation," International Journal of Control, Automation and Systems, vol. 14, pp. 1376-1388, 2016.
[13] M. S. Xavier et al., "Soft pneumatic actuators: A review of design, fabrication, modeling, sensing, control and applications," IEEE Access, vol. 10, pp. 59442-59485, 2022.
[14] C. Urrea and R. Agramonte, "Improving Exoskeleton Functionality: Design and Comparative Evaluation of Control Techniques for Pneumatic Artificial Muscle Actuators in Lower Limb Rehabilitation and Work Tasks," Processes, vol. 11, no. 12, p. 3278, 2023.
[15] Y. Qin, H. Zhang, X. Wang, and J. Han, "Active model-based hysteresis compensation and tracking control of pneumatic artificial muscle," Sensors, vol. 22, no. 1, p. 364, 2022.
[16] X. Liu, J. Zhang, F. Xu, T. Wang, and L. Zhao, "Design and modelling of multi-DOF manipulator driven by hysteresis-attenuated pneumatic artificial muscles," IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6447-6454, 2022.
[17] N. Sun, D. Liang, Y. Wu, Y. Chen, Y. Qin, and Y. Fang, "Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input constraints," IEEE Transactions on Industrial Informatics, vol. 16, no. 2, pp. 969-979, 2019.
[18] S. Xie, G. Ren, J. Xiong, and Y. Lu, "A trajectory tracking control of a robot actuated with pneumatic artificial muscles based on hysteresis compensation," IEEE Access, vol. 8, pp. 80964-80977, 2020.
[19] V. Suri, "Electroencephalogram (EEG)," in Clinical Neurological Examination and Localization: Springer, 2024, pp. 451-463.
[20] Y. Song, X. Jia, L. Yang, and L. Xie, "Transformer-based spatial-temporal feature learning for EEG decoding," arXiv preprint arXiv:2106.11170, 2021.
[21] N. Fei, Y. Gao, Z. Lu, and T. Xiang, "Z-score normalization, hubness, and few-shot learning," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 142-151.
[22] Y. Song, Q. Zheng, B. Liu, and X. Gao, "EEG conformer: Convolutional transformer for EEG decoding and visualization," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 710-719, 2022.
[23] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, no. 3, pp. 338-353, 1965/06/01/ 1965, doi: https://doi.org/10.1016/S0019-9958(65)90241-X.
[24] C. C. Tsai, H. C. Huang, and S. C. Lin, "Adaptive Neural Network Control of a Self-Balancing Two-Wheeled Scooter," IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1420-1428, 2010, doi: 10.1109/TIE.2009.2039452.
[25] S. Cong and Y. Liang, "PID-Like Neural Network Nonlinear Adaptive Control for Uncertain Multivariable Motion Control Systems," IEEE Transactions on Industrial Electronics, vol. 56, no. 10, pp. 3872-3879, 2009, doi: 10.1109/TIE.2009.2018433.
[26] T. Orlowska-Kowalska, M. Dybkowski, and K. Szabat, "Adaptive Sliding-Mode Neuro-Fuzzy Control of the Two-Mass Induction Motor Drive Without Mechanical Sensors," IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 553-564, 2010, doi: 10.1109/TIE.2009.2036023.
[27] H. Wang, J. Duan, M. Wang, J. Zhao, and Z. Dong, "Research on Robot Path Planning Based on Fuzzy Neural Network Algorithm," in 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 12-14 Oct. 2018 2018, pp. 1800-1803, doi: 10.1109/IAEAC.2018.8577599.
[28] R. Wang, Z. Zhou, and G. Qu, "Fuzzy Neural Network PID Control Based on RBF Neural Network for Variable Configuration Spacecraft," in 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 12-14 Oct. 2018 2018, pp. 1203-1207, doi: 10.1109/IAEAC.2018.8577860.
[29] X. Jiang, Z. Wang, C. Zhang, and L. Yang, "Fuzzy neural network control of the rehabilitation robotic arm driven by pneumatic muscles," Industrial Robot: An International Journal, vol. 42, no. 1, pp. 36-43, 2015.
[30] S. Yanagawa and I. Miki, "PID auto-tuning controller using a single neuron for DC servomotor," in [1992] Proceedings of the IEEE International Symposium on Industrial Electronics, 1992: IEEE, pp. 277-280.
[31] C. Chen, Y. Cao, X. Chen, D. Wu, C. Xiong, and J. Huang, "A Fused Deep Fuzzy Neural Network Controller and Its Application to Pneumatic Flexible Joint," IEEE/ASME Transactions on Mechatronics, vol. 28, no. 6, pp. 3214-3225, 2023, doi: 10.1109/TMECH.2023.3259985.
[32] G. Milani, A. Antonioni, A. Baroni, P. Malerba, and S. Straudi, "Relation between EEG measures and upper limb motor recovery in stroke patients: a scoping review," Brain Topography, vol. 35, no. 5, pp. 651-666, 2022.
[33] W. T. Dempster and G. R. Gaughran, "Properties of body segments based on size and weight," American journal of anatomy, vol. 120, no. 1, pp. 33-54, 1967.
[34] J.-J. Chang, W.-L. Tung, W.-L. Wu, M.-H. Huang, and F.-C. Su, "Effects of Robot-Aided Bilateral Force-Induced Isokinetic Arm Training Combined With Conventional Rehabilitation on Arm Motor Function in Patients With Chronic Stroke," Archives of Physical Medicine and Rehabilitation, vol. 88, no. 10, pp. 1332-1338, 2007/10/01/ 2007, doi: https://doi.org/10.1016/j.apmr.2007.07.016.
[35] C.-T. Chen, W.-Y. Lien, C.-T. Chen, and Y.-C. Wu, "Implementation of an upper-limb exoskeleton robot driven by pneumatic muscle actuators for rehabilitation," in Actuators, 2020, vol. 9, no. 4: MDPI, p. 106.
[36] H. T. Nguyen, V. C. Trinh, and T. D. Le, "An adaptive fast terminal sliding mode controller of exercise-assisted robotic arm for elbow joint rehabilitation featuring pneumatic artificial muscle actuator," in Actuators, 2020, vol. 9, no. 4: MDPI, p. 118.
[37] M. Irshaidat, M. Soufian, A. Al-Ibadi, and S. Nefti-Meziani, "A novel elbow pneumatic muscle actuator for exoskeleton arm in post-stroke rehabilitation," in 2019 2nd IEEE international conference on soft robotics (RoboSoft), 2019: IEEE, pp. 630-635.
[38] Y. Xu, Y. Qin, and J. Han, "Hysteresis Compensation of an Elbow Joint Rehabilitation Robot Featuring Flexible Pneumatic Artificial Muscle Actuation," in 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), 2021: IEEE, pp. 227-232.
[39] F. Durante, T. Raparelli, and P. Beomonte Zobel, "Two-Dof Upper Limb Rehabilitation Robot Driven by Straight Fibers Pneumatic Muscles," Bioengineering, vol. 9, no. 8, p. 377, 2022.
[40] W.-L. Chu, C.-J. Lin, and Y.-Y. Chen, "Redundant Robot with Pneumatic Artificial Muscles for Rehabilitation Works Using Iterative Learning Control," Applied Sciences, vol. 12, no. 17, p. 8419, 2022. [Online]. Available: https://www.mdpi.com/2076-3417/12/17/8419.
指導教授 李柏磊 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明