博碩士論文 111521061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.138.137.25
姓名 殷浩恩(Hao-En Yin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於GaN與GaAs HEMT技術的Sub-6 GHz與毫米波頻段Class-AB功率放大器設計與性能研究
(Sub-6 GHz and Millimeter-Wave Class-AB Power Amplifiers Using GaN and GaAs HEMT Technologies)
相關論文
★ 半橋氮化鎵驅動電路和功率電晶體積體化設計和其降壓器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究採用穩懋0.25 μm氮化鎵與0.15 μm砷化鎵高電子遷移率電晶體(HEMT)商用製程,分別設計適用於Sub-6 GHz頻段以及毫米波頻段的class-AB?單晶片微波積體電路(MMIC)功率放大器。
  第一片晶片使用0.25 μm GaN HEMT技術製作,為一單級class-AB功率放大器,其電路結構由單一電晶體搭配電感、電阻和電容等集總元件組成輸入、輸出匹配電路。該放大器操作頻率為3.5 GHz,模擬設計可達37.41 dBm的輸出功率,功率附加效益 (PAE) 為53.07 %;晶片直接量測結果顯示最大輸出功率為29.39 dBm,對應的功率附加效益為16.56 %。在5G NR QPSK和16-QAM調變訊號量測中ACPR分別為 ?38 與 ?39 dBc,另外均方根向量誤差失真 (EVM) 則是2.19%與2.04%。
  第二片晶片使用0.15 μm GaAs pHEMT技術製作,為一兩級class-AB功率放大器,並結合傳輸線、電阻和電容組成輸入、輸出與級間匹配電路;該放大器設計操作頻率在30 GHz,模擬設計可達到23.19 dBm的飽和輸出功率 (Psat) ,最大功率附加效益32.69%,以及1-dB壓縮點輸出功率 (OP1dB) 21.34 dBm。晶片直接實測結果顯示在28 GHz操作頻率下飽和輸出功率為21.46 dBm,最大功率附加效益可達33.54%,1-dB壓縮點輸出功率為14.70 dBm;在30 GHz操作頻率下飽和輸出功率僅有15.91 dBm,最大功率附加效益為6.53%,1-dB壓縮點輸出功率則為13.40 dBm。在5G NR QPSK、16-QAM與256-QAM調變訊號量測中ACPR分別為?22 dBc、?23 dBc與?33 dBc,依照5G NR Release 15標準,三種調變訊號EVM最大容許值:QPSK為17.5%、16-QAM為12.5%、256-QAM則為3.5%,各值所對應到的輸出功率各為14.27 dBm、13.18 dBm與3.71 dBm。
摘要(英) This study employs the WIN Semiconductors′ 0.25 μm GaN and 0.15 μm GaAs high electron mobility transistor (HEMT) commercial processes to design linear Class AB monolithic microwave integrated circuit (MMIC) power amplifiers for the Sub-6 GHz band and the millimeter-wave band, respectively.
The first chip is fabricated using the 0.25 μm GaN HEMT technology and is designed as a single-stage Class AB power amplifier. Its circuit structure comprises a single transistor paired with lumped components such as inductors, resistors, and capacitors to form input and output matching networks. The amplifier operates at a frequency of 3.5 GHz, with theoretical expectations of achieving an output power of 37.41 dBm and a power-added efficiency (PAE) of 53.07%. However, actual measurements show a maximum output power of 29.39 dBm with a corresponding PAE of 16.56%. During 5G NR QPSK and 16-QAM modulated signal testing, the adjacent channel power ratio (ACPR) is approximately -38 and -39 dBc, and the root mean square error vector magnitude (EVM) distortion values are 2.19% and 2.04%, respectively.
The second chip is fabricated using 0.15 μm GaAs pHEMT technology and is designed as a two-stage Class AB power amplifier. Its circuit structure incorporates two transistors, with input, output, and inter-stage matching networks formed using transmission lines, resistors, and capacitors. The amplifier is designed to operate at a frequency of 30 GHz, with theoretical expectations of achieving a saturated output power (Psat) of 23.19 dBm, a maximum power-added efficiency (PAE) of 32.69%, and a 1-dB compression point output power (OP1dB) of 21.34 dBm. However, measurement results show that at an operating frequency of 28 GHz, the saturated output power is 21.46 dBm, with a maximum PAE of 33.54% and an OP1dB of 14.70 dBm. At 30 GHz, the measured saturated output power drops to 15.91 dBm, the maximum PAE is 6.53%, and the OP1dB is 13.40 dBm. In the 5G NR QPSK, 16-QAM, and 256-QAM modulated signal measurements, the ACPR values are ?22 dBc, ?23 dBc, and ?33 dBc, respectively. According to the 5G NR Release 15 standard, the maximum allowable EVM for these three modulation signals is 17.5% for QPSK, 12.5% for 16-QAM, and 3.5% for 256-QAM. The corresponding output power levels are respectively 14.27 dBm, 13.18 dBm, and 3.71 dBm.
關鍵字(中) ★ 氮化鎵
★ 砷化鎵
★ 高電子遷移率電晶體
★ 功率放大器
★ Sub-6 GHz
★ 毫米波
★ 5G通訊
關鍵字(英) ★ GaN
★ GaAs
★ HEMT
★ Power Amplifier
★ mmWave
★ 5G Communication
論文目次 摘要 vi
Abstract vii
致謝 viii
目錄 ix
圖目錄 xi
表目錄 xxiii
第一章 緒論 1
1.1 前言 1
1.2 氮化鎵與砷化鎵材料特性 1
1.3 功率放大器應用於5G通訊發展現況之文獻回顧 4
1.4 研究動機與論文架構 34
第二章 功率放大器基本原理及介紹 35
2.1 前言 35
2.2 穩定性 35
2.3 放大器級別介紹 36
2.4 非線性現象 38
2.5 本章總結 43
第三章 3.5 GHz Class-AB 氮化鎵功率放大器設計 44
3.1 前言 44
3.2 元件布局介紹 44
3.3 Class-AB 單級功率放大器設計與模擬 45
3.3.1 電路設計 45
3.3.2 電路布局 47
3.3.3 模擬結果 49
3.4 功率放大器量測結果與對照分析 58
3.5 本章總結 77
第四章 30 GHz Class-AB砷化鎵功率放大器設計 78
4.1 前言 78
4.2 元件布局介紹 78
4.3 Class-AB 功率放大器設計與模擬 78
4.3.1 電路設計 78
4.3.2 電路布局 82
4.3.3 模擬結果 83
4.4 功率放大器量測結果與對照分析 92
4.5 本章總結 126
第五章 結論 127
參考文獻 128
附錄A. 調變訊號模擬 130
參考文獻 [1] M. Rais-Zadeh, V. J. Gokhale, A. Ansari, M. Faucher, D. Theron, Y. Cordier, and L. Buchaillot, “Gallium Nitride as an Electromechanical Material,” IEEE Journal of Microelectromechanical Systems, vol. 23, no. 6, pp. 1252–1271, Dec. 2014.
[2] S. Shinjo, K. Nakatani, K. Tsutsumi, and H. Nakamizo, “Integrating the Front End: A Highly Integrated RF Front End for High-SHF Wide-Band Massive MIMO in 5G.” IEEE Microwave Magazine, vol. 18, no. 5, pp. 31-40, Jul.-Aug. 2017
[3] ESTI TS 138 101-1 V15.2.0 (2018-07) Technical Specification 5G; NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone (3GPP TS 38.101-1 version 15.2.0 Release 15)
Online: https://www.etsi.org/deliver/etsi_ts/138100_138199/13810101/15.02.00_60/ts_13810101v150200p.pdf
[4] ESTI TS 138 101-1 V17.6.0 (2022-08) Technical Specification 5G; NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone (3GPP TS 38.101-2 version 17.6.0 Release 17)
Online: https://www.etsi.org/deliver/etsi_ts/138100_138199/13810102/17.06.00_60/ts_13810102v170600p.pdf
[5] Lie, D. Y.C., J. C. Mayeda, and J. Lopez. “Highly Efficient 5G Linear Power Amplifiers (PA) Design Challenges.” 2017 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Apr. 2017
[6] J. Nilsson, N. Billstrom, N. Rorsman and P. Romanini, "S-band Discrete and MMIC GaN Power Amplifiers," Proc. European Microwave Intergrated Circuits Conf., pp.495-498, Sep. 2009.
[7] E. M. Suijker, M. Sudow, M. Fagerlind, N. Rorsman, A. P. de Hek, and F. E. van Vliet, “GaN MMIC power amplifiers for S-band and X-band,” Proc. European Microwave. Conf., pp. 297–300, Oct. 2008.
[8] J. Lee, S. Jee, B. Park, C. H. Kim, and B. Kim, “GaN MMIC broadband saturated power amplifier,” Proc. Asia Pacific Microwave. Conf., pp. 606–608, Nov. 2013.
[9] M. A. Gonzalez-Garrido, J. Grajal, P. Cubilla, A. Cetronio, C. Lanzieri, and M. Uren, “2-6 GHz GaN MMIC power amplifiers for electronic warfare applications,” Proc. European Microwave Integrated Circuits Conf., pp. 83-86, Oct. 2008.
[10] 胡聖浩,“氮化鋁鎵/氮化鎵高電子遷移率電晶體之佈局分析及功率放大器研製”,國立中央大學,Nov. 2020
[11] D. Yan, Y. Zhang, M. Ingels, and P. Wambacq, “A 0.13μm GaAs HEMT Reconfigurable Balance-to-Doherty Stacked Power Amplifier for 5G mm-wave Applications,” Conf. on Ph.D Research in Microelectronics and Electronics (PRIME), pp. 1-4, Jun. 2023.
[12] H. Xie, Y. J. Cheng, and Y. Fan, “A Ka-Band Watt-Level High-Efficiency Integrated Doherty Power Amplifier in GaAs Technology,” IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), pp. 287-289, Nov. 2021.
[13] N. Mullins, Y. Vega, T. Sonnenberg, and Z. Popovic, “A Ku/K/Ka-Band GaAs MMIC Load-Modulated Amplifier with a Negative Group Delay Output Network,” IEEE MTT-S International Microwave Symposium (MTT-S IMS), pp. 845-846, Jun. 2022.
[14] B. W. Huang, Z. H. Fu, and K. Y. Lin, “A Millimeter-Wave Ultra-Wide Band Power Amplifier in 0.15-μm GaAs pHEMT for 5G Communication,” Asia?Pacific Microwave Conf., pp. 97-99, Nov. 2022.
[15] Y. C. Hsieh, G. J. Lin , Z. M. Tsai, and T. H. Chen, “Design and Analysis of a High Linearity Full Ka-Band Stacked-FET Power Amplifier Using 0.15-μm GaAs pHEMT Process,” IEEE Microwave and Wireless Technology Letters, vol. 34, no. 4, Apr. 2024
[16] John L.B. Walker. Handbook of RF and Microwave Power Amplifiers. New York: Cambridge University Press, 2011.
[17] D. M. Pozar. Microwave Engineering. 4th ed. John Wiley & Sons, Inc., 2012.
[18] S. C. Cripps. RF Power Amplifiers for Wireless Communications. 2nd ed. Artech House, Inc., 2006.
[19] Y. M. Qaragoez, I. Ali, S. J. Kim, and K. Y. Lee, “A 5.8GHz 9.5 dBm Class-E Power Amplifier for DSRC Applications,” International SoC Design Conf. (ISOCC), pp.202-203, 2019.
[20] X. Jiang, W. Huang, C. Bao, X. Wu, K. Wei, X. Liu, and W. Luo, “A High-Efficiency Continuous Class-F GaN MMIC Power Amplifier Using a Novel Harmonic Matching Network,” IEEE Microwave and Wireless Technology Letters, vol. 33, no. 9, Sep. 2023
[21] T. Hoffmann, A. Wentzel, F. Huhn, and W. Heinrich, “Novel Digital Microwave PA with More Than 40% PAE Over 10 dB Power Back-Off Range,” IEEE MTT-S International Microwave Symposium (MTT-S IMS), pp. 2037-2040, Jun. 2017.
指導教授 辛裕明 夏勤(Yue-Ming, Hsin Chin, Hsia) 審核日期 2025-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明