博碩士論文 111521065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.217.35.130
姓名 陳沿輯(Yan-Jic Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具有金屬-絕緣層-半導體與p型氮化鎵結合的閘極增強型氮化鋁鎵/氮化鎵 高電子遷移率電晶體
(E-mode AlGaN/GaN HEMT with Combination of MIS gate and p-GaN gate)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在傳統增強型p型氮化鎵閘極結構中,p型氮化鎵閘極為蕭特基接觸,臨界電壓值大約限制在1 V ~ 2 V,且汲極輸出電流密度也較低。本篇論文主要是研究加入一層氮化矽作為閘極絕緣層的新型增強型之金屬-絕緣層-半導體與p型氮化鎵結合的閘極元件,在新型結構中,兩個p型氮化鎵中間形成空乏型之金屬-絕緣層-半導體閘極的結構,目的是增加下方通道處的載子濃度,兩側為增強型之金屬-絕緣層- p型氮化鎵閘極結構,目的是調變導帶,使其為常關型元件。製程元件後透過量測元件靜態與動態特性完成特性分析,並利用Silvaco TCAD模擬研究新閘極結構的物理性分析。
在不同閘極金屬長度之新型增強型之金屬-絕緣層-半導體與p型氮化鎵結合的閘極元件中,可以觀察到隨著閘極金屬長度的增加,可以有較好控制下方通道的能力,使最大汲極輸出電流增加、導通電阻下降、電流開關比提升、轉導增益值增加。
相較於傳統增強型之金屬-絕緣層- p型氮化鎵閘極元件,新型增強型之金屬-絕緣層-半導體與p型氮化鎵結合的閘極元件改善汲極電流密度和轉導增益值達299 % (114.6 mA/mm)和214 % (56.4 mS/mm),導通電阻也降至17.9 Ω·mm。此外,元件的電流開關比也從1.0 × 104提升至6.0 × 108,說明新型增閘極元件可以提高閘極下方通道的控制能力,進而改善元件的導通特性。在元件動態特性量測中,閘極延遲、閘極和汲極延遲量測可以觀察到,傳統增強型之金屬-絕緣層- p型氮化鎵閘極元件的電流崩塌效應以及導通電阻退化較為嚴重,而新型閘極元件可以確實改善電流崩塌效應。
最後,關於絕緣層/半導體介面品質之分析,使用電容-電壓遲滯量測之曲線偏移量與電導法兩種方法來進行介面缺陷密度的萃取。結果呈現金屬-絕緣層-半導體二極體在SiN/AlGaN的介面缺陷密度是顯著增加高於AlGaN/GaN的介面缺陷密度,說明因蝕刻電漿所造成的表面傷害是非常巨大。此外,複雜的新型金屬-絕緣層-半導體與p型氮化鎵結合的閘極結構對於SiN/AlGaN和SiN/p-GaN綜合的介面缺陷密度,仍需再進行優化的研究。
摘要(英) In the conventional E-mode p-GaN gate structure, the p-GaN gate has Schottky contact, the threshold voltage value is limited to about 1 V ~ 2 V, and the drain output current density is also low. This paper mainly studies a novel E-mode MIS p-GaN gate HEMT that adds a layer of silicon nitride as the gate insulator layer. In the novel structure, a depletion mode metal-insulator-semiconductor gate structure is formed between two p-GaN in order to increase the carrier concentration in the 2DEG channel. On both p-GaN sides are enhanced metal-insulator-p-GaN gate structures to modulate the conduction band to make it a normally-off device. After the devices are fabricated, characteristic analysis is completed by measuring the static and dynamic characteristics of the device, and the physical analysis of the novel gate structure is studied using Silvaco TCAD simulation.
In the novel E-mode gate device combining metal-insulator-semiconductor and p-GaN with different gate metal lengths, it can be observed that as the gate metal length increases, the 2DEG channel can be better controlled. Ability to increase the ID,max, reduce the RON, increase the Ion/Ioff, and increase the Gm.
Compared with the conventional E-mode MIS p-GaN gate HEMT, the novel E-mode MIS p-GaN gate HEMT improves the drain current density and Gm reach 299 % (114.6 mA/mm) and 214 % (56.4 mS/mm), and the RON is also reduced to 17.9 Ω·mm. In addition, Ion/Ioff of the device also increased from 1.0 × 104 to 6.0 × 108, indicating that the novel gate device can improve the control capability of the channel below the gate, thereby improving the conduction characteristics of the device. Measurement of device dynamic characteristics, gate delay, gate and drain delay measurements can observe the current collapse effect and RON degradation of conventional E-mode MIS p-GaN gate HEMT is more serious, and novel gate device can indeed improve the current collapse effect.
Finally, regarding the analysis of the insulator layer/semiconductor interface quality, the curve offset of capacitance-voltage hysteresis measurement and the conductance method, were used to extract the interface state density. The results show that the interface state density of the metal-insulator-semiconductor diode in SiN/AlGaN is significantly higher than that of AlGaN/GaN, indicating that the surface damage caused by etching plasma is huge. In addition, the complex novel metal-insulator-semiconductor and p-GaN gate structure still needs to be optimized for the comprehensive interface state density of SiN/AlGaN and SiN/p-GaN.
關鍵字(中) ★ 氮化鎵
★ 增強型
★ 金屬-絕緣層-半導體
關鍵字(英) ★ GaN
★ E-mode
★ MIS
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XIII
第一章 緒論 1
1.1前言 1
1.2三五族半導體之氮化鎵特性 3
1.3空乏型之金屬-絕緣層-半導體元件以及增強型之p型氮化鎵閘極元件研究文獻回顧 6
1.3.1空乏型之金屬-絕緣層-半導體元件文獻回顧 6
1.3.2增強型之p型氮化鎵閘極元件文獻回顧 15
1.4研究動機與目的 25
1.5論文架構 25
第二章 氮化鎵電晶體之磊晶結構與元件佈局模擬 26
2.1氮化鋁鎵/氮化鎵於矽基板之磊晶結構與特性 26
2.2 D-mode MIS HEMT、E-mode MIS p-GaN gate HEMT與Novel E-mode MIS p-GaN gate HEMT之佈局與製程流程 35
2.2.1元件佈局設計 35
2.2.2 D-mode MIS HEMT、E-mode MIS p-GaN gate HEMT與Novel E-mode MIS p-GaN gate HEMT之製程流程 41
2.3 E-mode MIS p-GaN gate HEMT與Novel E-mode MIS p-GaN gate HEMT元件模擬 50
2.4結論 65
第三章D-mode MIS HEMT、E-mode MIS p-GaN gate HEMT與Novel E-mode MIS p-GaN gate HEMT元件量測討論 66
3.1 Novel E-mode MIS p-GaN gate HEMT之不同閘極金屬長度設計結構的直流量測特性比較 66
3.2 D-mode MIS HEMT、E-mode MIS p-GaN gate HEMT與Novel E-mode MIS p-GaN gate HEMT直流量測特性比較 74
3.3 E-mode MIS p-GaN gate HEMT與Novel E-mode MIS p-GaN gate HEMT動態量測特性比較 82
3.4 D-mode MIS HEMT、E-mode MIS p-GaN gate HEMT與Novel E-mode MIS p-GaN gate HEMT崩潰電壓量測及電容-電壓變頻量測 90
3.4.1崩潰電壓量測 90
3.4.2電容-電壓量測 96
3.5 結論 108
第四章 結論 109
參考文獻 110
附錄 I 詳細製程流程 113
Publication List/Acknowledgement 116
參考文獻 (1)SemiconductorTODAY,"GaN to grow at 9% CAGR to over 18% of RF device market by 2020," SemiconductorTODAY, 2014.
(2)R. Brown, "A novel AlGaNGaN based enhancement-mode high electron mobility transistor with sub-critical barrier thickness," Phd Thesis, University of Glasgow, 2015.
(3)M. Buffolo, D. Favero, A. Marcuzzi, C.-D. Santi, G. Meneghesso, E. Zanoni, and M. Meneghini, "Review and Outlook on GaN and SiC Power Devices: Industrial State-of-the-Art, Applications, and Perspectives," IEEE Transactions on Electron Devices, vol. 71, no. 3, pp. 5, March, 2024.
(4)O. Ambacher, J. Smart, J.-R. Shealy, N.-G. Weimann, K. Chu, M. Murphy, W.-J. Schaff, L.-F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of applied physics, vol. 85, no. 6, pp. 3-4, March, 1999.
(5)D. Balaz, "Current Collapse and Device Degradation in AlGaN/GaN Heterostructure Field Effect Transistors," Phd thesis, University of Glasgow, pp. 22, 2010.
(6)T. Grasser and G. Pobegen, "Characterization of electrically active defects at III-N/dielectric interfaces," Austria, November, 2016.
(7)S. Yang, Z. Tang, K.-Y. Wong, Y.-S. Lin, C. Liu, Y. Lu, S. Huang, and K.-J. Chen, "High-Quality Interface in Al2O3/GaN/GaN/AlGaN/GaN MIS Structures With In Situ Pre-Gate Plasma Nitridation," IEEE Electron Device Letters, vol. 34, pp. 1497–1499, December, 2013.
(8)M. Hua, Y. Lu, S. Liu, C. Liu, K. Fu, Y. Cai, B. Zhang, and K.-J. Chen "Compatibility of AlN/SiNx Passivation With LPCVD-SiNx Gate Dielectric in GaN-Based MIS-HEMT," IEEE Electron Device Letters, vol. 37, no. 3, pp. 265–268, March, 2016.
(9)S. Maeda, I. Nagase, A. Baratov, S. Urano, J.-T. Asubar, A. Yamamoto, and M. Kuzuhara, "Fabrication and Characterization of ZrO2/AlGaN/GaN MIS-HEMTs with regrown AlGaN Layer," IEEE International Meeting for Future Electron Devices, Kansai (IMFEDK), December, 2021.
(10)S. Zhang, X. Liu, K. Wei, S. Huang, X. Chen, Y. Zhang, Y. Zheng, G. Liu, T. Yuan, X. Wang, H. Yin, Y. Yao, and J. Niu, "Suppression of Gate Leakage Current in Ka-Band AlGaN/GaN HEMT With 5-nm SiN Gate Dielectric Grown by Plasma-Enhanced ALD," IEEE Transactions on Electron Devices, vol. 68, no. 1, pp. 49–52, January, 2021.
(11)C.-Y. Su, M.-C. Tsai, and T.-L. Wu, "DC/RF Performance and Reliability of 100-nm Gate Length AlGaN/GaN MIS-HEMTs with Different Thickness of in-situ SiN," International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT), May, 2023.
(12)J.-I. Chyi, H. Fujioka, H. Morkoc, D. Marcon, M.-V. Hove, B.-D. Jaeger, N. Posthuma, D. Wellekens, S. You, X. Kang, T.-L. Wu, M. Willems, S. Stoffels, and S. Decoutere, "Direct comparison of GaN-based e-mode architectures (recessed MISHEMT and p-GaN HEMTs) processed on 200mm GaN-on-Si with Au-free technology," Proc. of SPIE, vol. 9363, pp. 936311-1–936311-12, March, 2015.
(13)T. Sugiyama, D. Iida, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, "Threshold voltage control using SiNx in normally off AlGaN/GaN HFET with p-GaN gate," Physica status solidi, vol. 7, no. 8, pp. 1980–1982, May, 2010.
(14)T. Pu, Y. Chen, X. Li, T. Peng, X. Wang, J. Li, W. He, J. Ben, Y. Lu, and X. Liu, "Gate structure dependent normally-off AlGaN/GaN heterostructure field-effect transistors with p-GaN cap layer," Journal of Physics D: Applied Physics, vol. 53, no. 41, pp. 185–188, July, 2020.
(15)H.-C. Chiu, C.-H. Liu, C.-R. Huang, C.-C. Chiu, H.-C. Wang, H.-L. Kao, S.-Y. Lin, and F.-T. Chien, "Normally-Off p-GaN Gated AlGaN/GaN MIS-HEMTs with ALD-Grown Al2O3/AlN Composite Gate Insulator," Multidisciplinary Digital Publishing Institute, vol. 11, pp. 1–8, September, 2021.
(16)C.-H. Liu, H.-C. Chiu, H.-C. Wang, H.-L. Kao, and C.-R. Huang, "Improved Gate Reliability Normally-Off p-GaN/AlN/AlGaN/GaN HEMT With AlGaN Cap-Layer," IEEE Electron Device Letters, vol. 42, pp. 1432–1435, October, 2021.
(17)M. Jia, B. Hou, L. Yang, F. Jia, X. Niu, J. Du, Q. Chang, M. Zhang, M. Wu, X. Zhang, H. Lu, X. Ma, and Y. Hao, "High VTH and Improved Gate Reliability in P-GaN Gate HEMTs With Oxidation Interlayer," IEEE Electron Device Letters, vol. 44, pp. 1404–1407, September, 2023.
(18)I.-B. Rowena, S.-L. Selvaraj, and T. Egawa, "Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si," IEEE Electron Device Lett., vol. 32, no. 11, pp. 1534–1536, November, 2011.
(19)K.-S. Sriramadasu and Y.-M. Hsin, "A new gate design combined MIS and p-GaN gate structures for normally-off and high on-current operation," Japanese Journal of Applied Physics, Phys. 63, January, 2024.
(20)E.-H. Nicollian and A. Goetzberger, "The Si-SiO2 Interface - Electrical Properties as Determined by the Metal-Insulator-Silicon Conductance Technique," Bell Syst. Tech. J, vol. 46, pp. 1055-1133, July, 1967.
(21)S. Huang, Q. Jiang, S. Yang, Z. Tang, and K.-J. Chen, "Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges," IEEE Electron Device Lett., vol. 34, no. 2, pp. 193–195, February, 2013.
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2025-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明