博碩士論文 111521068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.222.251.131
姓名 許明駿(Ming-Chun HSU)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 超晶格HfO2/ZrO2結構可靠性及In2O3與TeO2通道材料遷移率的第一原理計算研究
(First-Principles Study on the Reliability of Superlattice HfO2/ZrO2 Structures and the Mobility of In2O3 and TeO2 Channel Materials)
相關論文
★ 可實現高溫資料保留、多層儲存單元與高耐久度鐵電電晶體之多功能閘極與HfO2/ZrO2超晶格堆疊研究★ H2電漿處理之超薄IGZO種子層的低電壓 鐵電電容器以實現30ns/3V讀寫速度且高儲存密度之每單元3位元FeNAND快閃記憶體
★ 實現瞬時讀取且長耐久性(>10^12次)之三位 元鐵電場效應電晶體製程技術與可靠度分析★ 應力工程和表面能對p型氧化錫(SnO)寬能隙相穩定化的影響
★ 高熱穩定性、長效耐久性 (>1011次 )且具瞬時讀取之多功能閘極 (TiN/Mo/TiOxNy/SL-HZO)層狀堆疊鐵電記憶體技術開發★ 基於氮化鍺碲碳非砷化物選擇器的高熱穩定性、低電壓變異性及高循環耐久性 (>1011) 的物理分析
★ 實現全後段製程相容性、基於IGZO雙電晶體及鐵電電容器之非揮發性記憶體★ 可實現 2.3V大記憶視窗(每單元3位元)、可立即讀取並具有????^??次寫入之鐵電電晶體及其在機器學習之高精確度研究
★ 透過氫電漿處理提升 FeFET 之耐久性、儲 存密度與讀取速度並改善 FeCAM 設計中的 穩定性與漢明距離★ 高速、低能耗、微型1T-PMOS TRNG陣列的設計和特性描述
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鐵電記憶體(FeRAM)因其優異的耐久性及操作速度能彌補馮·紐曼瓶頸的缺點,得益於這樣的優點使得在進行龐大數據計算能夠加速資料的處理,使成為人工智慧運算中有前瞻性的元件。目前鐵電記憶體廣泛使用的材料為氧化鉿鋯鐵電薄膜(HfO2-ZrO2, SL-HZO) ,因其展現出優越的極化特性、較小的變異性以及較高的切換速度,相較於固溶體 HfxZr1-xO2 (SS-HZO) 而受到關注。儘管已有研究表明晶格扭曲可能導致強極化,然而在超晶格結構中,週期膜厚與變異性、熱穩定性及保持特性衰退之間的關聯性仍缺乏全面的物理解釋。在本研究中,我們通過實驗的XPS 和電學測量觀察到這些行為,並結合從頭算分子動力學 (AIMD)、過度態 (NEB) 方法及COHP方法透過第一原理DFT計算,探討這些可靠性問題的根本原因。通過比較 HZ2.5, HZ5, HZ7.5 和HZ10 的缺陷形成(變異性)及熱穩定性,我們發現:(i) 較低的tp且有序的 Hf-O 與 Zr-O 原子排列可以縮短鍵長,防止扭曲傳播至材料內部,且聲子傳輸對於高溫保持有利。(ii) 較大的tp使SL-HZO能夠承受更大的應力偏壓;然而,Zr-O 鍵的失穩會累積缺陷,導致掃描操作中的高變異性。實驗表明,埃層堆疊的好處超過了奈米層堆疊的好處。
目前氧化物通道材料材料已經成為研究的焦點,因其中以銦鎵鋅氧化物 (IGZO)特別突出,IGZO由於通道與氧化物之間的介面層幾乎為零介電常數(Junction less),因此並不會與之前使用矽通道的電性下降的問題,然而,隨著應用領域的不斷擴展和發展,傳統的IGZO面臨挑戰,因為在高解析度顯示器和 3D NAND 中應用時,需要更高的遷移率和保有原有的低關斷電流及優異的覆蓋性。本研究通過第一原理計算比IGZO更高遷移率及更容易微縮的二元化合物之N型半導體通道材料-銦氧化物(In2O3),經過計算得出此材料單層膜厚的能隙高達2.27eV,功函數為4.2~5.3eV,並且實驗量測到的遷移率高達90 cm2V-1s-1。除此之外為了因應不同的應用,如設計雙極性電晶體、逆變器電路和透明薄膜電晶體,而先前NiO與Cu2O經過廣泛研究,但其遷移率都不超過100 cm2V-1s-1,因此研究具有高遷移率的寬能隙P型半導體也是迫切的,在此以二維氧化碲(TeO2)作為研究對象,其計算結果表明單層能隙高達3.79eV,功函數為3.9~4.3eV,並且遷移率高達200 cm2V-1s-1。本研究為高性能鐵電記憶體應用的實際設計指南提供了機會。
摘要(英) Ferroelectric memory (FeRAM) can overcome the von Neumann bottleneck due to its excellent durability and operational speed, which enables faster data processing for large-scale calculations, making it a forward-looking component in artificial intelligence computation. Currently, the widely used material for ferroelectric memory is hafnium zirconium oxide thin films (HfO2-ZrO2, SL-HZO), which have attracted attention due to their superior polarization properties, lower variability, and higher switching speed compared to solid solution HfxZr1-xO2 (SS-HZO). Although studies have shown that lattice distortion may lead to strong polarization, a comprehensive physical explanation is still lacking for the relationship between periodic film thick-ness, variability, thermal stability, and retention decay in superlattice structures. In this study, we used XPS and electrical measurements to observe these behaviors and explored the root causes of these reliability issues through first-principles DFT calculations, using ab initio molecular dynamics (AIMD), nudged elastic band (NEB) method, and crystal orbital Hamilton population (COHP) analysis. By comparing defect formation (variability) and thermal stability in HZ2.5, HZ5, HZ7.5, and HZ10, we found: (i) Lower tp and an ordered arrangement of Hf-O and Zr-O atoms can shorten bond lengths, preventing distortion from propagating into the material, and phonon transport favors high-temperature retention. (ii) Larger tp allows SL-HZO to withstand higher stress biases; however, the instability of Zr-O bonds accumulates defects, resulting in higher variability during sweep operations. Experiments indicate that the benefits of A-level stacking exceed those of nanolayer stacking.
Oxide channel materials have become a focal point of research, with indium gallium zinc oxide (IGZO) standing out in particular. IGZO is junction-less due to the near-zero dielectric constant at the interface layer between the channel and oxide, thereby avoiding the electrical degradation issues associated with silicon channels. However, as applications continue to expand and develop, traditional IGZO faces challenges in high-resolution displays and 3D NAND, where higher mobility, low off-current, and excellent coverage are essential. This study uses first-principles calculations to investigate an n-type semiconductor channel material, indium oxide (In2O3), a binary compound with higher mobility and easier scalability than IGZO. Calculations show that this material has an energy gap of 2.27 eV for a monolayer film thickness and a work function of 4.2–5.3 eV, with experimentally measured mobility reaching up to 90 cm2V?1s?1. Additionally, to accommodate different applications, such as the design of bipolar transistors, inverter circuits, and transparent thin-film transistors, we focused on high-mobility wide-bandgap p-type semiconductors. While NiO and Cu?O have been widely studied, their mobilities do not exceed 100 cm2V?1s?1. In this study, we investigated two-dimensional tellurium oxide (TeO?), which has a monolayer energy gap of 3.79 eV, a work function of 3.9–4.3 eV, and a mobility of up to 200 cm2V?1s?1. This study provides a practical design guideline for high-performance ferroelectric memory applications.
關鍵字(中) ★ 鐵電 關鍵字(英) ★ Ferroelectric
論文目次 摘要 i
致謝 v
圖目錄 x
表目錄 xiv
第一章 序論與文獻回顧 1
1.1 人工智慧與記憶體中計算(In-memory computing, IMC) 1
1.2 鐵電 1
1.2.1 鐵電材料的開端與發展 2
1.2.2 鐵電材料於記憶體應用 4
1.3 新穎鐵電氧化鉿鋯薄膜(FE-Hf1-xZrxO2, HZO) 5
1.3.1 固溶體與超晶格堆疊(Solid Solution and Superlattice) 5
1.3.2 缺陷的生成與影響 6
1.3.2.1 氧空缺生成 6
1.3.2.3氧空缺移動 7
1.3.2.3電荷捕捉效應(Charge Trapping Effect) 7
1.4 鐵電材料與金屬氧化物通道的結合 8
1.5 新興氧化物半導體通道材料(Emerging oxide semiconductor channel materials) 8
1.5.1 n型氧化物半導體通道材料(n-type oxide semiconductor channel materials) 8
1.5.1.1 銦鎵鋅氧化物薄膜電晶體(IGZO TFTs) 9
1.5.1.2 鎵氧化物薄膜電晶體(Ga2O3 TFTs) 10
1.5.1.3 銦氧化物薄膜電晶體(In2O3 TFTs) 10
1.5.2 p型氧化物半導體通道材料(p-type oxide semiconductor channel materials) 11
1.5.2.1 氧化鎳薄膜電晶體(NiO TFTs) 11
1.5.2.2 氧化銅薄膜電晶體(Cu2O TFTs) 11
1.5.2.3 氧化碲薄膜電晶體(TeO2 TFTs) 12
第二章 理論模擬計算原理 28
2.1 第一原理計算 28
2.1.1 密度泛函理論 (Density Functional Theory, DFT) 28
2.1.1.1 局部密度近似法 (Local Density Approximation, LDA) 29
2.1.1.2 廣義梯度近似法 (Generalized gradient approximations, GGA) 29
2.1.2 VASP?勢 (VASP Pseudopotential) 29
2.1.3 平面波投影法(Projected Augmented Waves, PAW) 30
2.2 分子動力學 (Molecular dynamics) 30
2.2.1 古典分子動力學(Classical molecular dynamics) 31
2.2.2 第一原理分子動力學(Ab-initio Molecular Dynamics, AIMD) 31
2.3 機械學習分子動力學(Moment Tensor Potential, MTP) 32
第三章 理論模擬計算建模及步驟 35
3.1 VASP計算設定 35
3.1.1 POSCAR設定 35
3.1.2 INCAR設定 35
3.1.3 KPOINTS設定 35
3.2 鐵電薄膜室溫下的氧空缺生成機率與位置分布計算 36
3.3 鐵電薄膜氧空缺移動的能障計算 36
3.4 鐵電薄膜中原子間的穩定性計算 36
3.5 鐵電薄膜的熱導值計算 37
3.6 遷移率計算 38
第四章 結果與討論 44
4.1 超晶格層狀堆疊鐵電薄膜 44
4.2 鐵電薄膜室溫下的氧空缺生成機率與位置分布結果 44
4.3 鐵電薄膜氧空缺移動的能障計算結果 45
4.4 鐵電薄膜中原子間的穩定性計算結果 45
4.5 鐵電薄膜的熱導值計算結果 46
4.6 遷移率計算結果之n型氧化物半導體-銦氧化物(In2O3) 47
4.7 遷移率計算結果之p型氧化物半導體-碲氧化物(TeO2) 48
第五章 結論與未來展望 74
參考文獻 76
附錄 84
圖目錄
圖 1 1 馮·紐曼架構下的記憶體牆 13
圖 1 2 鐵電磁滯曲線圖 13
圖 1 3 熱退火製程誘發薄膜材料晶相轉變 13
圖 1 4 不同Si摻雜濃度形成鐵電與反鐵電性 14
圖 1 5 HfO2受到摻雜、表面能與應力導致相變 14
圖 1 6 不同晶相使HfO2呈現順電與鐵電性 14
圖 1 7 不同退火溫度對磁滯曲線的影響 15
圖 1 8 不同Hf與ZrO2摻雜比例之P-V與C-V曲線圖 15
圖 1 9 GI-XRD分析HfO2、ZrO2及Hf0.5Zr0.5O2 15
圖 1 10 鐵電薄膜在後段製程溫度(400~450℃)的P-V曲線圖 16
圖 1 11 HZO為2.5nm之P-V曲線 16
圖 1 12 鐵電材料與鐵電元件的歷史發展 16
圖 1 13 鐵電材料應用於三種記憶體單胞 17
圖 1 14 三種主流記憶體結構 17
圖 1 15 FeFET操作示意圖 17
圖 1 16 鉿基與鈣態礦鐵電材料厚度比較 18
圖 1 17 鐵電穿隧接面結構 18
圖 1 18 SS-HZO與SL-HZO的示意圖 19
圖 1 19 MFM結構的SL-HZO的耐久性 19
圖 1 20 不同週期膜厚與SS-HZO的P-V圖 20
圖 1 21 SS-HZO與0.25 奈米周期膜厚SL-HZO的Pr 20
圖 1 22 不同週期膜厚與HZO的P-V與電流密度圖 21
圖 1 23 Ti 2p之XPS光譜分析圖 21
圖 1 24 MFIS結構使用Ti蓋住HZO 22
圖 1 25 氧空位對相穩定性的影響 22
圖 1 26 FeFET內電荷陷阱效應之示意圖 23
圖 1 27 Poly-Si通道與IGZO通道介電層之示意圖 23
圖 1 28 三元a-IGZO薄膜的結構和遷移率與化學成分的關係 23
圖 1 29 IGZO TFT的發展時間軸圖 24
圖 1 30 β-Ga2O3與其他主要半導體功率元件崩潰電壓的函數對應Ron的關係 24
圖 1 31 背向閘極In2O3 TFT的示意圖 24
圖 1 32基於NiO的薄膜電晶體示意圖 25
圖 1 33 NiO薄膜電晶體遷移率對溫度關係 25
圖 1 34 Cu2O 薄膜的電性質隨氧化溫度變化的情況 25
圖 1 35 TeO2晶體結構(a) α-TeO2 (b) β-TeO2 (c) γ-TeO2 26
圖 1 36 β-TeO2電洞遷移率與溫度變化 26
圖 1 37 β-TeO2 Id-Vg的關係圖 26
圖 2 1 古典分子動力學的計算流程 34
圖 2 2 MTP訓練示意圖 34
圖 3 1 In2O3 orthorhombic bulk範例 40
圖 3 2 β-TeO2 orthorhombic bulk範例 40
圖 3 3 SL-HZO的原子模型(HZ2.5、HZ5、HZ7.5及HZ10) 40
圖 3 4 NEB路徑圖 41
圖 3 5氫元素的能帶、DOS及COHP 41
圖 3 6 機械學習法流程圖 41
圖 3 7 NEMD模擬中的HZO原子模型 42
圖 3 8 非平衡分子動力學之溫度分布圖 42
圖 3 9 能帶邊緣與有效質量的關係 43
圖 3 10 形變勢能示意圖 43
圖 4 1 MFM電容的製作流程 51
圖 4 2 SL-HZO之P-V與電流密度特性圖(a) HZ6.5(b) HZ8.5及(c)ZrO2;耐久性(d) HZ6.5及(e) HZ8.5及(f)崩潰電壓 51
圖 4 3 氧空缺生成累積分布圖 51
圖 4 4 XPS Hf 4f 光譜及 Zr 3d之SS-HZO與SL-HZ6.5 52
圖 4 5 Vo傳導路徑(a)HZ2.5(c)HZ7.5及Vo遷移路徑能障圖(b)HZ2.5(d)HZ7.5 52
圖 4 6 (a)HfO2、ZrO2、HZ2.5及HZ7.5之COHP(b)-ICOHP與鍵長關係圖 53
圖 4 7 溫度分布圖SS-HZO及SL-HZO 53
圖 4 8 不同tp的SL-HZO及SS-HZO的熱導值對溫度變化圖 53
圖 4 9 (a)HZ2.5、HZ5及SS-HZO聲子傳輸(b)阿瑞尼斯圖外推十年數據保留性 54
圖 4 10 In2O3 Bulk結構 54
圖 4 11 In2O3 Bulk結構使用GGA-PBE泛函計算之能帶圖 54
圖 4 12 In2O3 Bulk結構使用HSE06泛函計算之能帶圖 55
圖 4 13 In2O3 Bulk之能態密度圖 55
圖 4 14 In2O3單層之Slab模型,X方向標示為(100),Y方向標示為(010) 55
圖 4 15 In2O3 單層結構使用GGA-PBE泛函計算之能帶圖 56
圖 4 16 In2O3 單層結構使用HSE06泛函計算之能帶圖 56
圖 4 17 In2O3單層之能態密度圖 56
圖 4 18單層In2O3 (100)方向之功函數 57
圖 4 19單層In2O3 (010)方向之功函數 57
圖 4 20單層In2O3 (100)方向施加應力與能量關係圖 57
圖 4 21單層In2O3 (010)方向施加應力與能量關係圖 58
圖 4 22單層In2O3 (100)方向之線性擬和形變勢能 58
圖 4 23單層In2O3 (010)方向之線性擬和形變勢能 58
圖 4 24 In2O3雙層之能帶圖 59
圖 4 25 In2O3三層之能帶圖 59
圖 4 26能隙與層數的關係 59
圖 4 27 In2O3雙層之能態密度圖 60
圖 4 28 In2O3三層之能態密度圖 60
圖 4 29 In2O3(a)單層(b)雙層(c)三層結構之功函數 61
圖 4 30 預測In2O3五層之形變勢能 62
圖 4 31 預測In2O3五層之電子遷移率 62
圖 4 32 預測In2O3五層之電洞遷移率 62
圖 4 33 β-TeO2 Bulk結構 63
圖 4 34 β-TeO2 Bulk結構使用GGA-PBE泛函計算之能帶圖 63
圖 4 35 β-TeO2 Bulk結構使用HSE06泛函計算之能帶圖 63
圖 4 36 β-TeO2 Bulk之能態密度圖 64
圖 4 37 β-TeO2單層之Slab模型,X方向標示為(100),Y方向標示為(010) 64
圖 4 38 β-TeO2 單層結構使用GGA-PBE泛函計算之能帶圖 64
圖 4 39 β-TeO2 單層結構使用HSE06泛函計算之能帶圖 65
圖 4 40 β-TeO2單層之能態密度圖 65
圖 4 41單層β-TeO2 (100)方向之功函數 65
圖 4 42單層β-TeO2 (010)方向之功函數 66
圖 4 43單層β-TeO2 (100)方向施加應力與能量關係圖 66
圖 4 44單層β-TeO2 (010)方向施加應力與能量關係圖 66
圖 4 45單層β-TeO2 (100)方向之線性擬和形變勢能 67
圖 4 46單層β-TeO2 (010)方向之線性擬和形變勢能 67
圖 4 47 β-TeO2雙層之能帶圖 67
圖 4 48 β-TeO2三層之能帶圖 68
圖 4 49 層狀能隙圖與其他計算結果比較 68
圖 4 50 β-TeO2雙層之能態密度圖 69
圖 4 51 β-TeO2三層之能態密度圖 69
圖 4 52 β-TeO2 (a)單層(b)雙層(c)三層結構之功函數 70
圖 4 53預測β-TeO2五層之形變勢能 71
圖 4 54預測β-TeO2五層之電子遷移率 71
圖 4 55預測β-TeO2五層之電子遷移率 71
表目錄
表 1 1 記憶體的比較 27
表4 1 In2O3晶格常數及能隙對照實驗 72
表4 2 In2O3單層、雙層及三層結構之計算結果 72
表4 3 β-TeO2的晶格常數和能隙與實驗及其他計算文獻之比較 72
表4 4 β-TeO2單層、雙層及三層結構之計算結果 73
表4 5 β-TeO2計算結果比較圖 73
參考文獻 [1] Etch Techniques for Next-Generation Storage-Class Memory, https://semiengineering.com/etch-techniques-for-next-generation-storage-class-memory/(accessed: November 2024)
[2] Fernandes Graca, M.P. and M.A. Valente, Ferroelectric glass-ceramics. MRS Bulletin, 42(03): p. 213-219. (2017)
[3] Valasek, J., Piezo-Electric and Allied Phenomena in Rochelle Salt. Physical Review, 17(4): p. 475-481. (1921)
[4] al, J.M.e., Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG. Symposium on VLSI Technology (VLSIT), 2012.
[5] Gong, N. and T.-P. Ma, Why Is FE–HfO2More Suitable Than PZT or SBT for Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective. IEEE Electron Device Letters, 37(9): p. 1123-1126. (2016)
[6] Boscke, T.S., et al., Ferroelectricity in hafnium oxide thin films. Applied Physics Letters, 99(10). (2011)
[7] Mueller, S., et al., Incipient Ferroelectricity in Al?Doped HfO2 Thin Films. Advanced Functional Materials, 22(11): p. 2412-2417. (2012)
[8] Olsen, T., et al., Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties. Applied Physics Letters, 101(8). (2012)
[9] Mueller, S., et al., Ferroelectricity in Gd-Doped HfO2Thin Films. ECS Journal of Solid State Science and Technology, 1(6): p. N123-N126. (2012)
[10] Park, M.H., et al., Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment. Nanoscale, 9(28): p. 9973-9986. (2017)
[11] Park, M.H., et al., A comprehensive study on the structural evolution of HfO2thin films doped with various dopants. Journal of Materials Chemistry C, 5(19): p. 4677-4690. (2017)
[12] Shimizu, T., Ferroelectricity in HfO<sub>2</sub> and related ferroelectrics. Journal of the Ceramic Society of Japan, 126(9): p. 667-674. (2018)
[13] Koveshnikov, S., et al., Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer. Applied Physics Letters, 88(2). (2006)
[14] Schaeffer, J.K., et al., Physical and electrical properties of metal gate electrodes on HfO2 gate dielectrics. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 21(1): p. 11-17. (2003)
[15] M. Gurfinkel, J.S.S., J. B. Bernstein and Y. Shapira, Enhanced Gate Induced Drain Leakage Current in HfO2 MOSFETs due to Remote Interface Trap-Assisted Tunneling. International Electron Devices Meeting, (2006).
[16] Lehninger, D., et al., Ferroelectric [HfO2/ZrO2] Superlattices with Enhanced Polarization, Tailored Coercive Field, and Improved High Temperature Reliability. Advanced Physics Research, 2(9). (2023)
[17] Muller, J., et al., Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Applied Physics Letters, 99(11). (2011)
[18] al, S.J.K.e., Ferroelectric TiN/Hf0.5Zr0.5O2/TiN Capacitors with Low-Voltage Operation and High Reliability for Next-Generation FRAM Applications. IEEE International Memory Workshop, (2018).
[19] Muller, J., et al., Ferroelectricity in Simple Binary ZrO2 and HfO2. Nano Lett, 12(8): p. 4318-23. (2012)
[20] Oh, S., et al., Effect of dead layers on the ferroelectric property of ultrathin HfZrOx film. Applied Physics Letters, 117(25). (2020)
[21] Mikolajick, T., et al., Next generation ferroelectric materials for semiconductor process integration and their applications. Journal of Applied Physics, 129(10). (2021)
[22] Park, J.Y., et al., A perspective on the physical scaling down of hafnia-based ferroelectrics. Nanotechnology, 34(20). (2023)
[23] Luk’yanchuk, I., et al., The ferroelectric field-effect transistor with negative capacitance. npj Computational Materials, 8(1). (2022)
[24] Garcia, V. and M. Bibes, Ferroelectric tunnel junctions for information storage and processing. Nat Commun, 5: p. 4289. (2014)
[25] Liang, Y.-K., et al., ZrO2-HfO2 Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability. IEEE Electron Device Letters, 43(9): p. 1451-1454. (2022)
[26] Migita, S., et al., Accelerated ferroelectric phase transformation in HfO2/ZrO2 nanolaminates. Applied Physics Express, 14(5). (2021)
[27] Kang, M., et al., HfO(2)-ZrO(2) Ferroelectric Capacitors with Superlattice Structure: Improving Fatigue Stability, Fatigue Recovery, and Switching Speed. ACS Appl Mater Interfaces, 16(2): p. 2954-2963. (2024)
[28] Materano, M., et al., Interplay between oxygen defects and dopants: effect on structure and performance of HfO2-based ferroelectrics. Inorganic Chemistry Frontiers, 8(10): p. 2650-2672. (2021)
[29] Kashir, A., et al., Large Remnant Polarization in a Wake-Up Free Hf0.5Zr0.5O2 Ferroelectric Film through Bulk and Interface Engineering. ACS Applied Electronic Materials, 3(2): p. 629-638. (2021)
[30] Ni, K., et al., Critical Role of Interlayer in Hf0.5Zr0.5O2 Ferroelectric FET Nonvolatile Memory Performance. IEEE Transactions on Electron Devices, 65(6): p. 2461-2469. (2018)
[31] Wang, C.-I., et al., Atomic layer deposited TiN capping layer for sub-10 nm ferroelectric Hf0.5Zr0.5O2 with large remnant polarization and low thermal budget. Applied Surface Science, 570. (2021)
[32] Kim, B.H., et al., Oxygen Scavenging in HfZrOx?Based n/p?FeFETs for Switching Voltage Scaling and Endurance/Retention Improvement. Advanced Electronic Materials, 9(5). (2023)
[33] Dirkmann, S., et al., Filament Growth and Resistive Switching in Hafnium Oxide Memristive Devices. ACS Appl Mater Interfaces, 10(17): p. 14857-14868. (2018)
[34] Zhou, Y., et al., The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle. Computational Materials Science, 167: p. 143-150. (2019)
[35] Yurchuk, E., et al., Charge-Trapping Phenomena in HfO2-Based FeFET-Type Nonvolatile Memories. IEEE Transactions on Electron Devices, 63(9): p. 3501-3507. (2016)
[36] Raja, J., et al., Improvement of Mobility in Oxide-Based Thin Film Transistors: A Brief Review. Transactions on Electrical and Electronic Materials, 16(5): p. 234-240. (2015)
[37] Mo, F., et al., Low-Voltage Operating Ferroelectric FET with Ultrathin IGZO Channel for High-Density Memory Application. IEEE Journal of the Electron Devices Society, 8: p. 717-723. (2020)
[38] Fortunato, E., P. Barquinha, and R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv Mater, 24(22): p. 2945-86. (2012)
[39] Li, Y., et al., Complementary Integrated Circuits Based on p-Type SnO and n-Type IGZO Thin-Film Transistors. IEEE Electron Device Letters, 39(2): p. 208-211. (2018)
[40] Tiwari, N., et al., Enabling high performance n-type metal oxide semiconductors at low temperatures for thin film transistors. Inorganic Chemistry Frontiers, 7(9): p. 1822-1844. (2020)
[41] Sharp Begins Production of World’s First*1 LCD Panels Incorporating IGZO*2 Oxide Semiconductors, https://global.sharp/corporate/news/120413.html. (accessed: November 2024)
[42] Zhu, Y., et al., Indium–gallium–zinc–oxide thin-film transistors: Materials, devices, and applications. Journal of Semiconductors, 42(3). (2021)
[43] Baldini, M., et al., Editors′ Choice—Si- and Sn-Doped Homoepitaxial β-Ga2O3Layers Grown by MOVPE on (010)-Oriented Substrates. ECS Journal of Solid State Science and Technology, 6(2): p. Q3040-Q3044. (2016)
[44] Muller, S., et al., Control of the conductivity of Si?doped β?Ga2O3 thin films via growth temperature and pressure. physica status solidi (a), 211(1): p. 34-39. (2013)
[45] Cui, S., et al., Room?Temperature Fabricated Amorphous Ga2O3 High?Response?Speed Solar?Blind Photodetector on Rigid and Flexible Substrates. Advanced Optical Materials, 5(19). (2017)
[46] Kim, J., et al., Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor. NPG Asia Materials, 9(3): p. e359-e359. (2017)
[47] Higashiwaki, M., et al., Recent progress in Ga2O3power devices. Semiconductor Science and Technology, 31(3). (2016)
[48] Charnas, A., et al., Atomically thin In2O3 field-effect transistors with 1017 current on/off ratio. Applied Physics Letters, 119(26). (2021)
[49] Si, M., et al., Why In2O3 Can Make 0.7 nm Atomic Layer Thin Transistors. Nano Letters, 21(1): p. 500-506. (2020)
[50] Shimotani, H., et al., p -type field-effect transistor of NiO with electric double-layer gating. Applied Physics Letters, 92(24). (2008)
[51] Jiang, J., et al., Thermal oxidation of Ni films for p-type thin-film transistors. Phys Chem Chem Phys, 15(18): p. 6875-8. (2013)
[52] Chen, Y., et al., Tunable electrical properties of NiO thin films and p-type thin-film transistors. Thin Solid Films, 592: p. 195-199. (2015)
[53] Al-Jawhari, H.A., A review of recent advances in transparent p-type Cu2O-based thin film transistors. Materials Science in Semiconductor Processing, 40: p. 241-252. (2015)
[54] Li, J., et al., Probing defects in nitrogen-doped Cu2O. Sci Rep, 4: p. 7240. (2014)
[55] Zeng, M., et al., Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control. Chem Rev, 118(13): p. 6236-6296. (2018)
[56] Li, M.Y., et al., How 2D semiconductors could extend Moore′s law. Nature, 567(7747): p. 169-170. (2019)
[57] Fiori, G., et al., Electronics based on two-dimensional materials. Nature Nanotechnology, 9(10): p. 768-779. (2014)
[58] Chhowalla, M., D. Jena, and H. Zhang, Two-dimensional semiconductors for transistors. Nature Reviews Materials, 1(11). (2016)
[59] Zavabeti, A., et al., High-mobility p-type semiconducting two-dimensional β-TeO2. Nature Electronics, 4(4): p. 277-283. (2021)
[60] Geerlings, P., F. De Proft, and W. Langenaeker, Conceptual Density Functional Theory. Chemical Reviews, 103(5): p. 1793-1874. (2003)
[61] Stampfl, C., et al., Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Physical Review B, 63(15). (2001)
[62] Lazzeri, M., et al., Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Physical Review B, 78(8). (2008)
[63] Schwerdtfeger, P., et al., The accuracy of the pseudopotential approximation. III. A comparison between pseudopotential and all-electron methods for Au and AuH. The Journal of Chemical Physics, 113(17): p. 7110-7118. (2000)
[64] Introduction to Molecular Dynamics. 2024, https://slideplayer.com/slide/13497704. (accessed: November 2024)
[65] Gubaev, K., et al., Accelerating high-throughput searches for new alloys with active learning of interatomic potentials. Computational Materials Science, 156: p. 148-156. (2019)
[66] Podryabinkin, E.V. and A.V. Shapeev, Active learning of linearly parametrized interatomic potentials. Computational Materials Science, 140: p. 171-180. (2017)
[67] Zuo, Y., et al., Performance and Cost Assessment of Machine Learning Interatomic Potentials. J Phys Chem A, 124(4): p. 731-745. (2020)
[68] Kresse, G. and J. Furthmuller, Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16): p. 11169-11186. (1996)
[69] Paier, J., et al., Screened hybrid density functionals applied to solids. J Chem Phys, 124(15): p. 154709. (2006)
[70] Dronskowski, R. and P.E. Bloechl, Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. The Journal of Physical Chemistry, 97(33): p. 8617-8624. (2002)
[71] Deringer, V.L., A.L. Tchougreeff, and R. Dronskowski, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. J Phys Chem A, 115(21): p. 5461-6. (2011)
[72] Hu, M. and D. Poulikakos, Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Lett, 12(11): p. 5487-94. (2012)
[73] Bardeen, J. and W. Shockley, Deformation Potentials and Mobilities in Non-Polar Crystals. Physical Review, 80(1): p. 72-80. (1950)
[74] Wang, V., et al., VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Computer Physics Communications, 267. (2021)
[75] Jin, Y., et al., High-throughput deformation potential and electrical transport calculations. npj Computational Materials, 9(1). (2023)
[76] Toprasertpong, K., et al., Low Operating Voltage, Improved Breakdown Tolerance, and High Endurance in Hf(0.5)Zr(0.5)O(2) Ferroelectric Capacitors Achieved by Thickness Scaling Down to 4 nm for Embedded Ferroelectric Memory. ACS Appl Mater Interfaces, 14(45): p. 51137-51148. (2022)
[77] Sire, C., et al., Statistics of electrical breakdown field in HfO2 and SiO2 films from millimeter to nanometer length scales. Applied Physics Letters, 91(24). (2007)
[78] Nelson, R., et al., LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J Comput Chem, 41(21): p. 1931-1940. (2020)
[79] Zhang, J., et al., Novel compounds in the Zr-O system, their crystal structures and mechanical properties. Phys Chem Chem Phys, 17(26): p. 17301-10. (2015)
[80] Luckyanova, M.N., et al., Coherent phonon heat conduction in superlattices. Science, 338(6109): p. 936-9. (2012)
[81] de Boer, T., et al., Band gap and electronic structure of cubic, rhombohedral, and orthorhombicIn2O3polymorphs: Experiment and theory. Physical Review B, 93(15). (2016)
[82] Li, Y., et al., Structural, electronic, and optical properties of α, β, and γ-TeO2. Journal of Applied Physics, 107(9). (2010)
[83] Biswas, R.K. and S.K. Pati, Achievement of strain-driven ultrahigh carrier mobility in β-TeO2. Materials Research Bulletin, 141. (2021)
[84] Dai, J. and X.C. Zeng, Titanium trisulfide monolayer: theoretical prediction of a new direct-gap semiconductor with high and anisotropic carrier mobility. Angew Chem Int Ed Engl, 54(26): p. 7572-6. (2015)
[85] Schusteritsch, G., M. Uhrin, and C.J. Pickard, Single-Layered Hittorf′s Phosphorus: A Wide-Bandgap High Mobility 2D Material. Nano Lett, 16(5): p. 2975-80. (2016)
[86] Zhang, S., et al., Recent progress in 2D group-VA semiconductors: from theory to experiment. Chem Soc Rev, 47(3): p. 982-1021. (2018)
[87] Cai, Y., G. Zhang, and Y.W. Zhang, Polarity-reversed robust carrier mobility in monolayer MoS(2) nanoribbons. J Am Chem Soc, 136(17): p. 6269-75. (2014)
[88] Guo, S., et al., Ultrathin tellurium dioxide: emerging direct bandgap semiconductor with high-mobility transport anisotropy. Nanoscale, 10(18): p. 8397-8403. (2018)
指導教授 唐英瓚(Ying-Tsan Tang) 審核日期 2024-11-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明