博碩士論文 111521070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:3.147.61.218
姓名 薛宇良(Yu-Liang Hsueh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 新型1C1T1R三態內容定址記憶體結合鐵電性與憶阻器功能實現高性能記憶體內搜尋
(A New 1C1T1R nv-TCAM with Hybrid Functionalities of Ferroelectricity and Memristor with High-performance In-memory-searching)
相關論文
★ 基於十六奈米鰭式場效電晶體平台實現通道轟擊電離編程機制之低成本高速嵌入式動態隨機存取記憶體★ 具有通道熱電子注入編程能力的40nm 4kb 1T OTP陣列的設計和實現
★ 通過虛擬源極傳輸模型對16-nm應變矽鰭式場效電晶體低溫準彈道傳輸的電性變化建模★ 基於閾值電壓電性擾動所實現之高速亂數產生率的40-nm 4T-SRAM真亂數產生器記憶體矩陣晶片
★ 多阻態存取1T1R電阻式記憶體矩陣晶片的三態內容定址記憶體的設計和實現★ 新穎的多阻態之真亂數產⽣器由 40nm電阻式記憶體陣列實現
★ 40奈米之電阻式記憶體陣列透過啟動/設置/重置操作物理不可複製功能的綜合研究★ 新穎極小化高密度三維整體堆疊式1T-nF電流熔絲一次性編程記憶體晶片
★ 混和訊號 1.6-3.6GHz 相位旋轉延遲鎖定迴路★ 高速、低能耗、微型1T-PMOS TRNG陣列的設計和特性描述
★ 極低溫下鰭式場效電晶體和平面場效電晶體之隨機摻雜凍結效應的實驗分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-17以後開放)
摘要(中) 隨著物聯網以及人工智慧的快速發展,在5G 通訊網路產品中三態內容定址記憶體(Ternary Content Addressable Memories, TCAM)扮演著越來越重要的角色,因為TCAM不同於一般的內容定址記憶體(Content Addressable Memories, CAM),TCAM 除了擁有
存取邏輯’’1’’以及邏輯”0”的功能之外,還提供了”Don’t care”模式,透過”Don’t care”模式我們能夠規避”don’t caring”的資料來提升我們在記憶體內搜尋的效能。
非揮發性三態內容定址記憶體(Non-volatile Ternary Content Addressable Memories,nv-TCAM)是一種透過非揮發記憶體像是可變電阻式記憶體(Resistive-Random-Access-Memory, RRAM)、磁阻式隨機存取記憶體(Magnetic-Random-Access-Memory, MRAM)、鐵電場效電晶體記憶體(Ferroelectric Field-Effect Transistor, FeFET)來實現的TCAM。
在本篇論文中,提出了一種新型的nv-TCAM,透過一個控制電晶體結合一層金屬-鐵電氧化層-金屬(Metal-Ferroelectric-Metal, MFM)結構與一層金屬-金屬氧化層-金屬(Metal-Insulator-Metal, MIM)結構來實現,透過把MFM層的下電極連結在電晶體的閘極端,把MIM 層的下電極連結在電晶體的汲極端,使它同時具有鐵電性以及憶阻器之功能,並且利用MFM 層來儲存nv-TCAM 所需要的”Care”與”Don’t Care”狀態,MIM層則是用來儲存要被搜尋的位元。
此設計成功混合了兩種不同的非揮發記憶體MFM 層以及MIM層來實現nv-TCAM的操作,相比於一般傳統透過靜態隨機存取記憶體(Static-Random-Access-Memory,SRAM)來實現的TCAM,此設計不僅能解決資料易失性的問題,且每個Unit Cell 也只需要使用一顆控制電晶體,因此可以省下更多的面積、功耗,並利用非揮發記憶體的優勢提高了資料的儲存密度,來達到高性能的記憶體內搜尋。
摘要(英) With the development of Internet-of-Things and Artificial Intelligence, Ternary Content Addressable Memories (TCAM) gradually plays as an important role in 5G network communication products. Different from the Content Addressable Memories (CAM), in addition to the capability in storage of bit-1 and bit-0, the TCAM also provides the “Don’t care” mode to by-pass those “don’t-caring” data to improve the performance in memory searching.
Non-volatile TCAM(nv-TCAM) is a type of TCAM that is based on non-volatile memories such as Resistive-Random-Access-Memory(RRAM), Magnetic-Random-Access-Memory(MRAM), or Ferroelectric Field-Effect Transistor(FeFET).
In this thesis, we invent a new nv-TCAM which is composed of an MFM(Metal-Ferroelectric-Metal) and an MIM(Metal-Insulator-Metal) layers with a control transistor.
Through connecting MFM bottom electrode to the gate of the control transistor and connecting the MIM bottom electrode to the drain of the control transistor, the nv-TCAM can combine the functionalities of ferroelectrically and memristor. The MFM layer is used to store the “Care”
and “Don’t care” state which are needed for the nv-TCAM, while MIM layer is used to store bit-1 and bit-0 to be searched.
This design successfully integrated two different types of non-volatile memory, the MFM layer and the MIM layer to implement the operation of nv-TCAM. Compared to the traditional TCAMs based on Static-Random-Access-Memory (SRAM), this design dese not only solve the problem of data volatility but also uses only one transistor of a unit-cell. Therefore, this design can save more area and power. Additionally, with the advantage of non-volatile memories, this design promotes the data storage density and achieves high-performance in memory searching.
關鍵字(中) ★ 非揮發性三態內容定址記憶體
★ 可變電阻式記憶體
★ 鐵電記憶體
★ 非揮發記憶體
★ 三態內容定址記憶體
關鍵字(英)
論文目次 摘要 .................................................................................................................... I
Abstract ............................................................................................................ II
致謝 ................................................................................................................. III
圖目錄 ............................................................................................................. VI
表目錄 ............................................................................................................. IX
一、 導論 .......................................................................................................... 1
1-1 背景 ....................................................................................................... 1
1-2 研究動機 ............................................................................................... 4
1-3 論文架構 ............................................................................................... 6
二、 非揮發記憶體種類與介紹 .................................................................... 12
2-1 非揮發記憶體(Non-volatile memory) ................................................ 12
2-2 快閃記憶體(Flash memory) ............................................................... 13
2-3 磁阻式隨機存取記憶體(MRAM) ...................................................... 14
2-4 相變式記憶體(PCM) .......................................................................... 15
2-5 鐵電記憶體(Ferroelectric memory) ................................................... 15
2-6 可變電阻式隨機存取記憶體(RRAM) .............................................. 18
三、 TCAM的介紹與種類 ............................................................................ 41
3-1 CAM與TCAM 的介紹 ...................................................................... 41
3-2 基於SRAM之TCAM ....................................................................... 42
3-3 基於FeFET 之nv-TCAM ............................................................. 43
3-4 基於RRAM之nv-TCAM ............................................................ 44
四、 1C1T1R nv-TCAM介紹及實驗設置 ................................................... 50
4-1 介紹 ..................................................................................................... 50
4-2 元件製備 ............................................................................................. 50
4-3 1T1C 之結構與操作條件 ................................................................... 51
4-4 1T1R 之結構與操作條件 ................................................................... 52
4-5 1C1T1R nv-TCAM 之結構與操作條件 ............................................ 53
4-6 實驗設置 ............................................................................................. 54
五、 實驗結果與討論 .................................................................................... 66
5-1 MFM 儲存單元之電性量測 ............................................................... 66
5-2 MIM 儲存單元之電性量測 ................................................................ 66
5-3 1C1T1R nv-TCAM Cell 耐久度測試(Endurance) ............................. 66
5-4 1C1T1R nv-TCAM Cell 資料保存時間測試(Retention) .................. 67
5-5 1C1T1R nv-TCAM Cell 操作與性能表現......................................... 68
六、 結論 ........................................................................................................ 84
Reference ......................................................................................................... 86
參考文獻 [1] H. Z. Yang, P. Huang, R. Z. Han, Y. C. Xiang, Y. Feng, B. Gao, J. Z. Chen, L. F. Liu, X. Y.
Liu, J. F. Kang, "A Novel High-Density and Low-Power Ternary Content Addressable
Memory Design Based on 3D NAND Flash," 2020 IEEE Silicon Nanoelectronics
Workshop (SNW), Honolulu, HI, USA, 2020, pp. 29-30, doi:
10.1109/SNW50361.2020.9131662.
[2] E. Garzón, M. Lanuzza, A. Teman and L. Yavits, "AM4: MRAM Crossbar Based
CAM/TCAM/ACAM/AP for In-Memory Computing," in IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 13, no. 1, pp. 408-421, March 2023, doi:
10.1109/JETCAS.2023.3243222.
[3] J. Li, "Enabling phase-change memory for data-centric computing: Technology, circuitand
system," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon,
Portugal, 2015, pp. 21-24, doi: 10.1109/ISCAS.2015.7168560.
[4] Yi Xiao , Shan Deng , Zijian Zhao , et al. Quasi-Nondestructive Read Out of Ferroelectric
Capacitor Polarization by Exploiting a 2TnC Cell to Relax the Endurance
Requirement. TechRxiv. April 10, 2023. doi: 10.36227/techrxiv.22570033.v1
[5] L. Zheng, S. Shin, S. Lloyd, M. Gokhale, K. Kim and S. -M. Kang, "RRAM-based TCAMs
for pattern search," 2016 IEEE International Symposium on Circuits and Systems (ISCAS),
Montreal, QC, Canada, 2016, pp. 1382-1385, doi: 10.1109/ISCAS.2016.7527507.
[6] S. Jeloka, N. Akesh, D. Sylvester and D. Blaauw, "A configurable TCAM/BCAM/SRAM
using 28nm push-rule 6T bit cell," 2015 Symposium on VLSI Circuits (VLSI Circuits),
Kyoto, Japan, 2015, pp. C272-C273, doi: 10.1109/VLSIC.2015.7231285.
[7] H. Wu, F. Lombardi and J. Han, "A PCM-based TCAM cell using NDR," 2013 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH), Brooklyn, NY, USA,2013, pp. 89-94, doi: 10.1109/NanoArch.2013.6623050.
[8] B. Yan, Z. Li, Y. Chen and H. Li, "RAM and TCAM designs by using STT-MRAM," 2016
16th Non-Volatile Memory Technology Symposium (NVMTS), Pittsburgh, PA, USA, 2016,
pp. 1-5, doi: 10.1109/NVMTS.2016.7781514.
[9] M. Kutila, A. Paasio and T. Lehtonen, "Comparison of 130 nm technology 6T and 8T
SRAM cell designs for Near-Threshold operation," 2014 IEEE 57th International Midwest
Symposium on Circuits and Systems (MWSCAS), College Station, TX, USA, 2014, pp.
925-928, doi: 10.1109/MWSCAS.2014.6908567.
[10] D. -Y. Lim, I. -J. Jung, D. -H. Kim and S. -O. Jung, "Computing-In-Memory Using 1T1C
Embedded DRAM Cell with Micro Sense Amplifier for Enhancing Throughput," 2022
IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Yeosu, Korea,
Republic of, 2022, pp. 1-4, doi: 10.1109/ICCE-Asia57006.2022.9954870.
[11] Joe Brewer; Manzur Gill, "Introduction to Nonvolatile Memory," in Nonvolatile Memory
Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and
Using Flash Memory Devices, IEEE, 2008, pp.1-18, doi: 10.1002/9780470181355.ch1.
[12] Joe Brewer; Manzur Gill, "Physics of Flash Memories," in Nonvolatile Memory
Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and
Using Flash Memory Devices, IEEE, 2008, pp.129-177, doi: 10.1002/9780470181355.ch4.
[13] G. S. Sandhu, "Emerging memories technology landscape," 2013 13th Non-Volatile
Memory Technology Symposium (NVMTS), Minneapolis, MN, USA, 2013, pp. 1-5, doi:
10.1109/NVMTS.2013.6851050.
[14] V. Sousa, G. Navarro1, N. Castellani1, M. Coué1, O. Cueto1, C. Sabbione1, P. Noé1, L.
Perniola1, S. Blonkowski2, P. Zuliani3, R. Annunziata3, "Operation fundamentals in
12Mb Phase Change Memory based on innovative Ge-rich GST materials featuring high
reliability performance," 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto,
Japan, 2015, pp. T98-T99, doi: 10.1109/VLSIT.2015.7223708.
[15] B. Ku, S. Choi, Y. Song and C. Choi, "Fast Thermal Quenching on the Ferroelectric
Al:HfO2 Thin Film with Record Polarization Density and Flash Memory
Application," 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020, pp.
1-2, doi: 10.1109/VLSITechnology18217.2020.9265024.
[16] A. Toriumi, Lun Xu, Yuki Mori, Xuan Tian, Patrick D. Lomenzo, Halid Mulaosmanovic,
Monica Materano, Thomas Mikolajick, and Uwe Schroeder, "Material perspectives of
HfO2-based ferroelectric films for device applications," 2019 IEEE International Electron
Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 15.1.1-15.1.4, doi:
10.1109/IEDM19573.2019.8993464.
[17] T. Schenk and S. Mueller, "A New Generation of Memory Devices Enabled by
Ferroelectric Hafnia and Zirconia," 2021 IEEE International Symposium on Applications
of Ferroelectrics (ISAF), Sydney, Australia, 2021, pp. 1-11, doi:
10.1109/ISAF51943.2021.9477377.
[18] J. Müller, T.S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk,
K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. SeidelA. Kumarf , T.M. Arrudaf , S.V.
Kalininf , T. Schlösserc , R. Boschkec , R. van Bentumc , U. Schrödera , T. Mikolajick,
"Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future
ferroelectric memories," 2013 IEEE International Electron Devices Meeting, Washington,
DC, USA, 2013, pp. 10.8.1-10.8.4, doi: 10.1109/IEDM.2013.6724605.
[19] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder and U. Böttger, "Ferroelectricity in
hafnium oxide: CMOS compatible ferroelectric field effect transistors," 2011
International Electron Devices Meeting, Washington, DC, USA, 2011, pp. 24.5.1-24.5.4,
doi: 10.1109/IEDM.2011.6131606.
[20] A. Padovani, L. Larcher, O. Pirrotta, L. Vandelli and G. Bersuker, "Microscopic Modeling
of HfOx RRAM Operations: From Forming to Switching," in IEEE Transactions on
Electron Devices, vol. 62, no. 6, pp. 1998-2006, June 2015, doi:10.1109/TED.2015.2418114.
[21] S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy and D. Ielmini,
"Statistical Fluctuations in HfOx Resistive-Switching Memory: Part I - Set/Reset
Variability," in IEEE Transactions on Electron Devices, vol. 61, no. 8, pp. 2912-2919, Aug.
2014, doi: 10.1109/TED.2014.2330200.
[22] K. Pagiamtzis and A. Sheikholeslami, "Pipelined match-lines and hierarchical search-lines
for low-power content-addressable memories," Proceedings of the IEEE 2003 Custom
Integrated Circuits Conference, 2003., San Jose, CA, USA, 2003, pp. 383-386, doi:
10.1109/CICC.2003.1249423.
[23] A. Fritsch, Alexander Fritsch, Michael Kugel, Rolf Sautter,Dieter Wendel, Jürgen Pille,
Otto Torreiter, Shankar Kalyanasundaram, Daniel A. Dobson, "A 4GHz, low latency
TCAM in 14nm SOI FinFET technology using a high performance current sense amplifier
for AC current surge reduction," ESSCIRC Conference 2015 - 41st European Solid-State
Circuits Conference (ESSCIRC), Graz, Austria, 2015, pp. 343-346, doi:
10.1109/ESSCIRC.2015.7313897.
[24] C. -X. Xue, W. -C. Zhao, T. -H. Yang, Y. -J. Chen, H. Yamauchi and M. -F. Chang, "A
28mn 320Kb TCAM Macro with Sub-0.8ns Search Time and 3.5+x Improvement in
Delay-Area-Energy Product using Split-Controlled Single-Load 14T Cell," 2018 IEEE
Asian Solid-State Circuits Conference (A-SSCC), Tainan, Taiwan, 2018, pp. 127-128, doi:
10.1109/ASSCC.2018.8579323.
[25] E. R. Hsieh, Yu Lian Hsueh, Rui Qi Lin, Yi Xiang Huang, Pei Jun Hou, Kai Hsiang Chang,
Ting Ho Shen, Yu Hsien Li, and Ruei Yang Lyu, "A Nonvolatile Ternary-Content-
Addressable- Memory Comprising Resistive-Gate Field-Effect Transistors," in IEEE
Electron Device Letters, vol. 44, no. 8, pp. 1292-1295, Aug. 2023, doi:
10.1109/LED.2023.3289179.
[26] F. Wei, X. Cui, S. Zhang and X. Zhang, "An 11T SRAM Cell for the Dual-Direction In Array Logic/CAM Operations," in IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 71, no. 4, pp. 2329-2333, April 2024, doi: 10.1109/TCSII.2023.3337119.
[27] S. Jeloka, N. B. Akesh, D. Sylvester and D. Blaauw, "A 28 nm Configurable Memory
(TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory,"
in IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 1009-1021, April 2016, doi:
10.1109/JSSC.2016.2515510.
[28] K. Pagiamtzis and A. Sheikholeslami, "Content-addressable memory (CAM) circuits and
architectures: a tutorial and survey," in IEEE Journal of Solid-State Circuits, vol. 41, no.
3, pp. 712-727, March 2006, doi: 10.1109/JSSC.2005.864128.
[29] E. R. Hsieh, Y. T. Tang, C. R. Liu S. M. Wang, Y. L., Hsueh, R. Q. Lin, Y. X. Huang, Y. T.
Chen, "3-bits-per-cell 2T32CFE nvTCAM by Angstrom-laminated Ferroelectric Layers
with 10¹¹ Cycles of Endurance and 4.92V of Ultra-wide Memory-windows for In-memorysearching,"
2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology
and Circuits), Kyoto, Japan, 2023, pp. 1-2, doi:
10.23919/VLSITechnologyandCir57934.2023.10185226.
[30] Z. Wang, P. Li, Z. Wang, S. Xing, X. Fan and Y. Zhang, "A Novel RRAM-Based TCAM
Search Array," 2024 Conference of Science and Technology for Integrated Circuits
(CSTIC), Shanghai, China, 2024, pp. 1-3, doi: 10.1109/CSTIC61820.2024.10531948.
[31] Y. L., Hsueh, R. Q. Lin, Y. X. Huang, Y. H. Lin, K. H. Chang, T. H. Shen, E R. Hsieh, S.
Simon Wong, "A New 1C1T1R nv-TCAM with Simultaneously Hybrid Ferroelectricity
and Memristor Layers Feasible for Ultra-highly-dense and High-performance In-memorysearching,"
2024 8th IEEE Electron Devices Technology & Manufacturing Conference
(EDTM), Bangalore, India, 2024, pp. 1-3, doi: 10.1109/EDTM58488.2024.10512294.
[32] Chien-Chen Lin, Jui-Yu Hung, Wen-Zhang Lin, Chieh-Pu Lo, Yen-Ning Chiang, Hsiang-
Jen Tsai, Geng-Hau Yang, Ya-Chin King, Chrong Jung Lin, Tien-Fu Chen, Meng-Fan
Chang, "7.4 A 256b-wordlength ReRAM-based TCAM with 1ns search-time and 14×improvement in wordlength-energyefficiency-density product using 2.5T1R cell," 2016
IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA,
2016, pp. 136-137, doi: 10.1109/ISSCC.2016.7417944.
[33] Meng-Fan Chang, Ching-Hao, Chuang, Yen-Ning Chiang, Shyh-Shyuan Sheu, Chia-Chen
Kuo, Hsiang-Yun Cheng, John Sampson, Mary Jane Irwin, "Designs of emerging memory
based non-volatile TCAM for Internet-of-Things (IoT) and big-data processing: A 5T2R
universal cell," 2016 IEEE International Symposium on Circuits and Systems (ISCAS),
Montreal, QC, Canada, 2016, pp. 1142-1145, doi: 10.1109/ISCAS.2016.7527447.
[34] Meng-Fan Chang, Lie-Yue Huang, Wen-Zhang Lin, Yen-Ning Chiang, Chia-Chen Kuo,
Ching-Hao Chuang, Keng-Hao Yang, Hsiang-Jen Tsai, Tien-Fu Chen and Shyh-Shyuan
Sheu, "A ReRAM-Based 4T2R Nonvolatile TCAM Using RC-Filtered Stress-Decoupled
Scheme for Frequent-OFF Instant-ON Search Engines Used in IoT and Big-Data
Processing," in IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2786-2798, Nov.
2016, doi: 10.1109/JSSC.2016.2602218.
[35] Meng-Fan Chang, Chien-Chen Lin, Albert Lee, Yen-Ning Chiang, Chia-Chen Kuo, Geng-
Hau Yang, Hsiang-Jen Tsai, Tien-Fu Chen, Member and Shyh-Shyuan Sheu, "A 3T1R
Nonvolatile TCAM Using MLC ReRAM for Frequent-Off Instant-On Filters in IoT and
Big-Data Processing," in IEEE Journal of Solid-State Circuits, vol. 52, no. 6, pp. 1664-
1679, June 2017, doi: 10.1109/JSSC.2017.2681458.
[36] D. R. B. Ly, J-P. Noel, B. Giraud, P. Royer, E. Esmanhotto, N. Castellani, T. Dalgaty, JF.
Nodin, C. FenouilletBeranger, E. Nowak and E. Vianello, "Novel 1T2R1T RRAMbased
Ternary Content Addressable Memory for Large Scale Pattern Recognition," 2019
IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019,
pp. 35.5.1-35.5.4, doi: 10.1109/IEDM19573.2019.8993621.
指導教授 謝易叡 審核日期 2024-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明