參考文獻 |
[1] H. Z. Yang, P. Huang, R. Z. Han, Y. C. Xiang, Y. Feng, B. Gao, J. Z. Chen, L. F. Liu, X. Y.
Liu, J. F. Kang, "A Novel High-Density and Low-Power Ternary Content Addressable
Memory Design Based on 3D NAND Flash," 2020 IEEE Silicon Nanoelectronics
Workshop (SNW), Honolulu, HI, USA, 2020, pp. 29-30, doi:
10.1109/SNW50361.2020.9131662.
[2] E. Garzón, M. Lanuzza, A. Teman and L. Yavits, "AM4: MRAM Crossbar Based
CAM/TCAM/ACAM/AP for In-Memory Computing," in IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 13, no. 1, pp. 408-421, March 2023, doi:
10.1109/JETCAS.2023.3243222.
[3] J. Li, "Enabling phase-change memory for data-centric computing: Technology, circuitand
system," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon,
Portugal, 2015, pp. 21-24, doi: 10.1109/ISCAS.2015.7168560.
[4] Yi Xiao , Shan Deng , Zijian Zhao , et al. Quasi-Nondestructive Read Out of Ferroelectric
Capacitor Polarization by Exploiting a 2TnC Cell to Relax the Endurance
Requirement. TechRxiv. April 10, 2023. doi: 10.36227/techrxiv.22570033.v1
[5] L. Zheng, S. Shin, S. Lloyd, M. Gokhale, K. Kim and S. -M. Kang, "RRAM-based TCAMs
for pattern search," 2016 IEEE International Symposium on Circuits and Systems (ISCAS),
Montreal, QC, Canada, 2016, pp. 1382-1385, doi: 10.1109/ISCAS.2016.7527507.
[6] S. Jeloka, N. Akesh, D. Sylvester and D. Blaauw, "A configurable TCAM/BCAM/SRAM
using 28nm push-rule 6T bit cell," 2015 Symposium on VLSI Circuits (VLSI Circuits),
Kyoto, Japan, 2015, pp. C272-C273, doi: 10.1109/VLSIC.2015.7231285.
[7] H. Wu, F. Lombardi and J. Han, "A PCM-based TCAM cell using NDR," 2013 IEEE/ACM
International Symposium on Nanoscale Architectures (NANOARCH), Brooklyn, NY, USA,2013, pp. 89-94, doi: 10.1109/NanoArch.2013.6623050.
[8] B. Yan, Z. Li, Y. Chen and H. Li, "RAM and TCAM designs by using STT-MRAM," 2016
16th Non-Volatile Memory Technology Symposium (NVMTS), Pittsburgh, PA, USA, 2016,
pp. 1-5, doi: 10.1109/NVMTS.2016.7781514.
[9] M. Kutila, A. Paasio and T. Lehtonen, "Comparison of 130 nm technology 6T and 8T
SRAM cell designs for Near-Threshold operation," 2014 IEEE 57th International Midwest
Symposium on Circuits and Systems (MWSCAS), College Station, TX, USA, 2014, pp.
925-928, doi: 10.1109/MWSCAS.2014.6908567.
[10] D. -Y. Lim, I. -J. Jung, D. -H. Kim and S. -O. Jung, "Computing-In-Memory Using 1T1C
Embedded DRAM Cell with Micro Sense Amplifier for Enhancing Throughput," 2022
IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Yeosu, Korea,
Republic of, 2022, pp. 1-4, doi: 10.1109/ICCE-Asia57006.2022.9954870.
[11] Joe Brewer; Manzur Gill, "Introduction to Nonvolatile Memory," in Nonvolatile Memory
Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and
Using Flash Memory Devices, IEEE, 2008, pp.1-18, doi: 10.1002/9780470181355.ch1.
[12] Joe Brewer; Manzur Gill, "Physics of Flash Memories," in Nonvolatile Memory
Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and
Using Flash Memory Devices, IEEE, 2008, pp.129-177, doi: 10.1002/9780470181355.ch4.
[13] G. S. Sandhu, "Emerging memories technology landscape," 2013 13th Non-Volatile
Memory Technology Symposium (NVMTS), Minneapolis, MN, USA, 2013, pp. 1-5, doi:
10.1109/NVMTS.2013.6851050.
[14] V. Sousa, G. Navarro1, N. Castellani1, M. Coué1, O. Cueto1, C. Sabbione1, P. Noé1, L.
Perniola1, S. Blonkowski2, P. Zuliani3, R. Annunziata3, "Operation fundamentals in
12Mb Phase Change Memory based on innovative Ge-rich GST materials featuring high
reliability performance," 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto,
Japan, 2015, pp. T98-T99, doi: 10.1109/VLSIT.2015.7223708.
[15] B. Ku, S. Choi, Y. Song and C. Choi, "Fast Thermal Quenching on the Ferroelectric
Al:HfO2 Thin Film with Record Polarization Density and Flash Memory
Application," 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020, pp.
1-2, doi: 10.1109/VLSITechnology18217.2020.9265024.
[16] A. Toriumi, Lun Xu, Yuki Mori, Xuan Tian, Patrick D. Lomenzo, Halid Mulaosmanovic,
Monica Materano, Thomas Mikolajick, and Uwe Schroeder, "Material perspectives of
HfO2-based ferroelectric films for device applications," 2019 IEEE International Electron
Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 15.1.1-15.1.4, doi:
10.1109/IEDM19573.2019.8993464.
[17] T. Schenk and S. Mueller, "A New Generation of Memory Devices Enabled by
Ferroelectric Hafnia and Zirconia," 2021 IEEE International Symposium on Applications
of Ferroelectrics (ISAF), Sydney, Australia, 2021, pp. 1-11, doi:
10.1109/ISAF51943.2021.9477377.
[18] J. Müller, T.S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk,
K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. SeidelA. Kumarf , T.M. Arrudaf , S.V.
Kalininf , T. Schlösserc , R. Boschkec , R. van Bentumc , U. Schrödera , T. Mikolajick,
"Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future
ferroelectric memories," 2013 IEEE International Electron Devices Meeting, Washington,
DC, USA, 2013, pp. 10.8.1-10.8.4, doi: 10.1109/IEDM.2013.6724605.
[19] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder and U. Böttger, "Ferroelectricity in
hafnium oxide: CMOS compatible ferroelectric field effect transistors," 2011
International Electron Devices Meeting, Washington, DC, USA, 2011, pp. 24.5.1-24.5.4,
doi: 10.1109/IEDM.2011.6131606.
[20] A. Padovani, L. Larcher, O. Pirrotta, L. Vandelli and G. Bersuker, "Microscopic Modeling
of HfOx RRAM Operations: From Forming to Switching," in IEEE Transactions on
Electron Devices, vol. 62, no. 6, pp. 1998-2006, June 2015, doi:10.1109/TED.2015.2418114.
[21] S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy and D. Ielmini,
"Statistical Fluctuations in HfOx Resistive-Switching Memory: Part I - Set/Reset
Variability," in IEEE Transactions on Electron Devices, vol. 61, no. 8, pp. 2912-2919, Aug.
2014, doi: 10.1109/TED.2014.2330200.
[22] K. Pagiamtzis and A. Sheikholeslami, "Pipelined match-lines and hierarchical search-lines
for low-power content-addressable memories," Proceedings of the IEEE 2003 Custom
Integrated Circuits Conference, 2003., San Jose, CA, USA, 2003, pp. 383-386, doi:
10.1109/CICC.2003.1249423.
[23] A. Fritsch, Alexander Fritsch, Michael Kugel, Rolf Sautter,Dieter Wendel, Jürgen Pille,
Otto Torreiter, Shankar Kalyanasundaram, Daniel A. Dobson, "A 4GHz, low latency
TCAM in 14nm SOI FinFET technology using a high performance current sense amplifier
for AC current surge reduction," ESSCIRC Conference 2015 - 41st European Solid-State
Circuits Conference (ESSCIRC), Graz, Austria, 2015, pp. 343-346, doi:
10.1109/ESSCIRC.2015.7313897.
[24] C. -X. Xue, W. -C. Zhao, T. -H. Yang, Y. -J. Chen, H. Yamauchi and M. -F. Chang, "A
28mn 320Kb TCAM Macro with Sub-0.8ns Search Time and 3.5+x Improvement in
Delay-Area-Energy Product using Split-Controlled Single-Load 14T Cell," 2018 IEEE
Asian Solid-State Circuits Conference (A-SSCC), Tainan, Taiwan, 2018, pp. 127-128, doi:
10.1109/ASSCC.2018.8579323.
[25] E. R. Hsieh, Yu Lian Hsueh, Rui Qi Lin, Yi Xiang Huang, Pei Jun Hou, Kai Hsiang Chang,
Ting Ho Shen, Yu Hsien Li, and Ruei Yang Lyu, "A Nonvolatile Ternary-Content-
Addressable- Memory Comprising Resistive-Gate Field-Effect Transistors," in IEEE
Electron Device Letters, vol. 44, no. 8, pp. 1292-1295, Aug. 2023, doi:
10.1109/LED.2023.3289179.
[26] F. Wei, X. Cui, S. Zhang and X. Zhang, "An 11T SRAM Cell for the Dual-Direction In Array Logic/CAM Operations," in IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 71, no. 4, pp. 2329-2333, April 2024, doi: 10.1109/TCSII.2023.3337119.
[27] S. Jeloka, N. B. Akesh, D. Sylvester and D. Blaauw, "A 28 nm Configurable Memory
(TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory,"
in IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 1009-1021, April 2016, doi:
10.1109/JSSC.2016.2515510.
[28] K. Pagiamtzis and A. Sheikholeslami, "Content-addressable memory (CAM) circuits and
architectures: a tutorial and survey," in IEEE Journal of Solid-State Circuits, vol. 41, no.
3, pp. 712-727, March 2006, doi: 10.1109/JSSC.2005.864128.
[29] E. R. Hsieh, Y. T. Tang, C. R. Liu S. M. Wang, Y. L., Hsueh, R. Q. Lin, Y. X. Huang, Y. T.
Chen, "3-bits-per-cell 2T32CFE nvTCAM by Angstrom-laminated Ferroelectric Layers
with 10¹¹ Cycles of Endurance and 4.92V of Ultra-wide Memory-windows for In-memorysearching,"
2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology
and Circuits), Kyoto, Japan, 2023, pp. 1-2, doi:
10.23919/VLSITechnologyandCir57934.2023.10185226.
[30] Z. Wang, P. Li, Z. Wang, S. Xing, X. Fan and Y. Zhang, "A Novel RRAM-Based TCAM
Search Array," 2024 Conference of Science and Technology for Integrated Circuits
(CSTIC), Shanghai, China, 2024, pp. 1-3, doi: 10.1109/CSTIC61820.2024.10531948.
[31] Y. L., Hsueh, R. Q. Lin, Y. X. Huang, Y. H. Lin, K. H. Chang, T. H. Shen, E R. Hsieh, S.
Simon Wong, "A New 1C1T1R nv-TCAM with Simultaneously Hybrid Ferroelectricity
and Memristor Layers Feasible for Ultra-highly-dense and High-performance In-memorysearching,"
2024 8th IEEE Electron Devices Technology & Manufacturing Conference
(EDTM), Bangalore, India, 2024, pp. 1-3, doi: 10.1109/EDTM58488.2024.10512294.
[32] Chien-Chen Lin, Jui-Yu Hung, Wen-Zhang Lin, Chieh-Pu Lo, Yen-Ning Chiang, Hsiang-
Jen Tsai, Geng-Hau Yang, Ya-Chin King, Chrong Jung Lin, Tien-Fu Chen, Meng-Fan
Chang, "7.4 A 256b-wordlength ReRAM-based TCAM with 1ns search-time and 14×improvement in wordlength-energyefficiency-density product using 2.5T1R cell," 2016
IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA,
2016, pp. 136-137, doi: 10.1109/ISSCC.2016.7417944.
[33] Meng-Fan Chang, Ching-Hao, Chuang, Yen-Ning Chiang, Shyh-Shyuan Sheu, Chia-Chen
Kuo, Hsiang-Yun Cheng, John Sampson, Mary Jane Irwin, "Designs of emerging memory
based non-volatile TCAM for Internet-of-Things (IoT) and big-data processing: A 5T2R
universal cell," 2016 IEEE International Symposium on Circuits and Systems (ISCAS),
Montreal, QC, Canada, 2016, pp. 1142-1145, doi: 10.1109/ISCAS.2016.7527447.
[34] Meng-Fan Chang, Lie-Yue Huang, Wen-Zhang Lin, Yen-Ning Chiang, Chia-Chen Kuo,
Ching-Hao Chuang, Keng-Hao Yang, Hsiang-Jen Tsai, Tien-Fu Chen and Shyh-Shyuan
Sheu, "A ReRAM-Based 4T2R Nonvolatile TCAM Using RC-Filtered Stress-Decoupled
Scheme for Frequent-OFF Instant-ON Search Engines Used in IoT and Big-Data
Processing," in IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2786-2798, Nov.
2016, doi: 10.1109/JSSC.2016.2602218.
[35] Meng-Fan Chang, Chien-Chen Lin, Albert Lee, Yen-Ning Chiang, Chia-Chen Kuo, Geng-
Hau Yang, Hsiang-Jen Tsai, Tien-Fu Chen, Member and Shyh-Shyuan Sheu, "A 3T1R
Nonvolatile TCAM Using MLC ReRAM for Frequent-Off Instant-On Filters in IoT and
Big-Data Processing," in IEEE Journal of Solid-State Circuits, vol. 52, no. 6, pp. 1664-
1679, June 2017, doi: 10.1109/JSSC.2017.2681458.
[36] D. R. B. Ly, J-P. Noel, B. Giraud, P. Royer, E. Esmanhotto, N. Castellani, T. Dalgaty, JF.
Nodin, C. FenouilletBeranger, E. Nowak and E. Vianello, "Novel 1T2R1T RRAMbased
Ternary Content Addressable Memory for Large Scale Pattern Recognition," 2019
IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019,
pp. 35.5.1-35.5.4, doi: 10.1109/IEDM19573.2019.8993621. |