參考文獻 |
[1] P. Sharma, R. Anusha, K. Bharath, J. K. Gulati, P. K. Walia and S. J. Darak, "Quantification of figures of merit of 7T and 8T SRAM cells in subthreshold region and their comparison with the conventional 6T SRAM cell," 2016 20th International Symposium on VLSI Design and Test (VDAT), Guwahati, India, 2016, pp. 342-343, doi: 10.1109/ISVDAT.2016.8064899.
[2] K. L. V. Ramana Kumari, M. Asha Rani, N. Balaji, S. Kotha and M. M. Kota, "Power Optimization Analysis of Different Sram Cells Using Transistor Stacking Technique," 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Dehradun, India, 2021, pp. 385-390, doi: 10.1109/UPCON52273.2021.9667583.
[3] T. Rim, K. Che, S. Kwon, J. S. Lee, J. Oh, H. Ban, Jooyoung Lee, "Enhanced DRAM Single Bit Characteristics from Process Control of Chlorine," 2023 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2023, pp. 782-785, doi: 10.1109/IRPS48203.2023.10118042.
[4] R. Karam, R. Puri, S. Ghosh and S. Bhunia, "Emerging Trends in Design and Applications of Memory-Based Computing and Content-Addressable Memories," in Proceedings of the IEEE, vol. 103, no. 8, pp. 1311-1330, Aug. 2015, doi: 10.1109/JPROC.2015.2434888.
[5] H. Kim and Y. Kim, "Binary Content-Addressable Memory System using Nanoelectromechanical Memory Switch," 2020 International SoC Design Conference (ISOCC), Yeosu, Korea (South), 2020, pp. 270-271, doi: 10.1109/ISOCC50952.2020.9332913.
[6] S. Hanzawa, T. Sakata, K. Kajigaya, R. Takemura and T. Kawahara, "A large-scale and low-power CAM architecture featuring a one-hot-spot block code for IP-address lookup in a network router," in IEEE Journal of Solid-State Circuits, vol. 40, no. 4, pp. 853-861, April 2005, doi: 10.1109/JSSC.2005.845554.
[7] Z. Ullah, M. K. Jaiswal and R. C. C. Cheung, "Z-TCAM: An SRAM-based Architecture for TCAM," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 2, pp. 402-406, Feb. 2015, doi: 10.1109/TVLSI.2014.2309350.
[8] Wang Guo, M. Bardi, Pengbo Yu and Jingjing Wu, "Research on switch address lookup table based on TCAM," International Conference on Cyberspace Technology (CCT 2014), Beijing, 2014, pp. 415-419, doi: 10.1049/cp.2014.1379.
[9] A. Shaban, S. Ahmad, N. Alam and M. Hasan, "Compact and Reliable Low Power Non-Volatile TCAM Cell," 2018 8th International Symposium on Embedded Computing and System Design (ISED), Cochin, India, 2018, pp. 100-104, doi: 10.1109/ISED.2018.8704013.
[10] B. Govoreanu, A. Ajaykumar, H. Lipowicz, Y.-Y. Chen, J.-c. Liu, R. Degraeve, L. Zhang, and S. Clima, and L. Goux, and I.P. Radu, and A. Fantini, and N. Raghavan, and G.-S. Kar, and W. Kim, and A. Redolfi, and D.J. Wouters, and L. Altimime, and M. Jurczak, "Performance and reliability of Ultra-Thin HfO2-based RRAM (UTO-RRAM)," 2013 5th IEEE International Memory Workshop, Monterey, CA, USA, 2013, pp. 48-51, doi: 10.1109/IMW.2013.6582095.
[11] M. Kumar, M. -H. Wu, T. -H. Hou and M. Suri, "CMOS-RRAM Based Non-Volatile Ternary Content Addressable Memory (nvTCAM)," in IEEE Transactions on Nanotechnology, vol. 23, pp. 203-207, 2024, doi: 10.1109/TNANO.2024.3360312.
[12] D. Takashima, "Overview of FeRAMs: Trends and perspectives," 2011 11th Annual Non-Volatile Memory Technology Symposium Proceeding, Shanghai, China, 2011, pp. 36-41, doi: 10.1109/NVMTS.2011.6137107.
[13] S. Sulaiman, H. M. Nadzar and Z. Awang, "Characterization of PZT and PNZT thin films for monolithic microwave integrated circuit applications," TENCON 2011 - 2011 IEEE Region 10 Conference, Bali, Indonesia, 2011, pp. 1235-1239, doi: 10.1109/TENCON.2011.6129003.
[14] U. Celano and Y. H. Chen and A. Minj and K. Banerjee and N. Ronchi and S. McMitchell and P. Van Marcke and P. Favia and T. L. Wu and B. Kaczer and G. Van den Bosch and J. Van Houdt and P. van der Heide, "Probing the Evolution of Electrically Active Defects in Doped Ferroelectric HfO2 during Wake-Up and Fatigue," 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020, pp. 144-145, doi: 10.1109/VLSITechnology18217.2020.9265098.
[15] M. Pesic, Franz P. G. Fengler, S. Slesazeck, U. Schroeder, T. Mikolajick, L. Larcher, A. Padovani, "Root cause of degradation in novel HfO2-based ferroelectric memories," 2016 IEEE International Reliability Physics Symposium (IRPS), Pasadena, CA, USA, 2016, pp. MY-3-1-MY-3-5, doi: 10.1109/IRPS.2016.7574619.
[16] C. Sun, Q. Kong, G. Liu, D. Zhang, L. Jiao, X. L. Wang, J. Zhang, and H. W. Xu, Y. Feng, R. Shao, and Y. Chen, and X. Gong, "Understanding Bias Stress-Induced Instabilities in ALD-Deposited ZnO FeFETs Featuring HZO-Al2O3-HZO Ferroelectric Stack," in IEEE Electron Device Letters, vol. 45, no. 11, pp. 2122-2125, Nov. 2024, doi: 10.1109/LED.2024.3462933.
[17] S. -C. Chang and U. E. Avci, "Hafnium-based FeRAM for Next-generation High-speed and High-Density Embedded Memory," 2022 IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 2022, pp. 87-88, doi: 10.1109/SNW56633.2022.9889012.
[18] J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto, F. Sugaya, and M. Materano, T. Ali, M. Lederer, K. Kuehnel, K.Seidel, U. Schroeder, T. Mikolajick, M. Tsukamoto, T. Umebayashi, "High-Endurance and Low-Voltage operation of 1T1C FeRAM Arrays for Nonvolatile Memory Application," 2021 IEEE International Memory Workshop (IMW), Dresden, Germany, 2021, pp. 44-46, doi: 10.1109/IMW51353.2021.9439595.
[19] M. Yamaguchi, S. Fujii, K. Ota and M. Saitoh, "Breakdown Lifetime Analysis of HfO2-based Ferroelectric Tunnel Junction (FTJ) Memory for In-Memory Reinforcement Learning," 2020 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 2020, pp. 459-464, doi: 10.1109/IRPS45951.2020.9129314.
[20] J. -Y. Lee and F.-S. Chang, K.-Y. Hsiang, P.-H. Chen, Z.-F. Luo, Z.-X. Li, J.-H. Tsai, C. W. Liu, M. H. Lee, "3D Stackable Vertical Ferroelectric Tunneling Junction (V-FTJ) with on/off Ratio 1500x, Applicable Cell Current, Self-Rectifying Ratio 1000x, Robust Endurance of 10? Cycles, Multilevel and Demonstrated Macro Operation Toward High-Density BEOL NVMs," 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 2023, pp. 459-460, doi: 10.23919/VLSITechnologyandCir57934.2023.10185163.
[21] M. Abuwasib, H. Lee, P. Sharma, C. -B. Eom, A. Gruverman and U. Singisetti, "CMOS compatible integrated ferroelectric tunnel junctions (FTJ)," 2015 73rd Annual Device Research Conference (DRC), Columbus, OH, USA, 2015, pp. 45-46, doi: 10.1109/DRC.2015.7175545.
[22] P. Duhan , T. Ali, P. Khedgarkar, K. Kuhnel, M. Czernohorsky, M. Rudolph, R. Hoffmann, A. Sunbul, D. Lehninger, P. Schramm, T. Kampfe, K.Seidel, "Endurance Study of Silicon-Doped Hafnium Oxide (HSO) and Zirconium-Doped Hafnium Oxide (HZO)-Based FeFET Memory," in IEEE Transactions on Electron Devices, vol. 70, no. 11, pp. 5645-5650, Nov. 2023, doi: 10.1109/TED.2023.3316138.
[23] X. Li, Y. Yuan, C. J. Jin, X. Z. Li, X. Yu, B. Chen, C. Ran, G. Han, "Interface Engineering for Performance and Reliability Optimization of Hf0.5Zr0.5O2 FeFETs: Device Integration and Electrical Characterization," 2024 IEEE International Conference on IC Design and Technology (ICICDT), Singapore, Singapore, 2024, pp. 115-118, doi: 10.1109/ICICDT63592.2024.10717818.
[24] F. Wei, X. Cui, S. Zhang and X. Zhang, "An 11T SRAM Cell for the Dual-Direction In-Array Logic/CAM Operations," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 71, no. 4, pp. 2329-2333, April 2024, doi: 10.1109/TCSII.2023.3337119.
[25] G. Surekha, N. Balaji and Y. Padma Sai, "A Low Power Binary CAM using 7T SRAM cell with increased substrate bias," 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2021, pp. 691-695, doi: 10.1109/ICOSEC51865.2021.9591858.
[26] S. D. Kumar and N. M. Sk, "A Novel Ternary Content-Addressable Memory (TCAM) Design Using Reversible Logic," 2015 28th International Conference on VLSI Design, Bangalore, India, 2015, pp. 316-320, doi: 10.1109/VLSID.2015.99.
[27] S. Jeloka, N. B. Akesh, D. Sylvester and D. Blaauw, "A 28 nm Configurable Memory (TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory," in IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 1009-1021, April 2016, doi: 10.1109/JSSC.2016.2515510.
[28] Z. Wang, P. Li, Z. Wang, S. Xing, X. Fan and Y. Zhang, "A Novel RRAM-Based TCAM Search Array," 2024 Conference of Science and Technology for Integrated Circuits (CSTIC), Shanghai, China, 2024, pp. 168-170, doi: 10.1109/CSTIC61820.2024.10531948.
[29] L. Zheng, S. Shin, S. Lloyd, M. Gokhale, K. Kim and S. -M. Kang, "RRAM-based TCAMs for pattern search," 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 2016, pp. 1382-1385, doi: 10.1109/ISCAS.2016.7527507.
[30] E. R. Hsieh, Y. L. Hsueh, R. Q. Lin, Y. X. Huang, P. J. Hou, K. H. Chang, T. H. Shen, Y. H. Li, R. Y. Lyu, "A Nonvolatile Ternary-Content-Addressable- Memory Comprising Resistive-Gate Field-Effect Transistors," in IEEE Electron Device Letters, vol. 44, no. 8, pp. 1292-1295, Aug. 2023, doi: 10.1109/LED.2023.3289179.
[31] Y. L. Hsueh, R. Q. Lin, Y. X. Huang, Y. H. Lin, K. H. Chang, T. H. Shen, E. R. Hsieh, S. Wong, "A New 1C1T1R nv-TCAM with Simultaneously Hybrid Ferroelectricity and Memristor Layers Feasible for Ultra-highly-dense and High-performance In-memory-searching," 2024 8th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Bangalore, India, 2024, pp. 171-173, doi: 10.1109/EDTM58488.2024.10512294.
[32] M. -F. Chang, L. Y. Huang, W. Z. Lin, Y. N. Chiang, C. C. Kuo, C. H. Chuang, K. H. Yang, H. J. Tsai, T. F. Chen, S. S. Sheu, "A ReRAM-Based 4T2R Nonvolatile TCAM Using RC-Filtered Stress-Decoupled Scheme for Frequent-OFF Instant-ON Search Engines Used in IoT and Big-Data Processing," in IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2786-2798, Nov. 2016, doi: 10.1109/JSSC.2016.2602218.
[33] M. -F. Chang, C. C. Lin, Albert Lee, Y. N. Chiang, C. C. Kuo, G. H. Yang, H. J. Tsai, T. F. Chen, S. S. Sheu, "A 3T1R Nonvolatile TCAM Using MLC ReRAM for Frequent-Off Instant-On Filters in IoT and Big-Data Processing," in IEEE Journal of Solid-State Circuits, vol. 52, no. 6, pp. 1664-1679, June 2017, doi: 10.1109/JSSC.2017.2681458.
[34] D. R. B. Ly, J-P. Noel, B. Giraud, P. Royer, E. Esmanhotto, N. Castellani, T. Dalgaty, J-F. Nodin, C. Fenouillet-Beranger, E. Nowak, E. Vianello, "Novel 1T2R1T RRAM-based Ternary Content Addressable Memory for Large Scale Pattern Recognition," 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, pp. 35.5.1-35.5.4, doi: 10.1109/IEDM19573.2019.8993621.
[35] C. Marchand, I. O’Connor, M. Cantan, E. T. Breyer, S. Slesazeck and T. Mikolajick, "A FeFET-Based Hybrid Memory Accessible by Content and by Address," in IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 8, no. 1, pp. 19-26, June 2022, doi: 10.1109/JXCDC.2022.3168057.
[36] S. Lim, D. H. Ko, S. K. Kim and S. -O. Jung, "Cross-Coupled Ferroelectric FET-Based Ternary Content Addressable Memory With Energy-Efficient Match Line Scheme," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 2, pp. 806-818, Feb. 2023, doi: 10.1109/TCSI.2022.3222383. |