博碩士論文 111521084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:172 、訪客IP:3.131.37.193
姓名 劉鎮潁(Jen-Ying Liu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用 90-nm CMOS 與 100-nm GaAs pHEMT 製程之 Q 頻段與 E 頻段功率放大器
(Q-band and E-band Power Amplifiers in 90-nm CMOS and 100-nm GaAs pHEMT Technologies)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 使用可調式負載及面積縮放技巧提升功率放大器之效率
★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現★ 應用於極座標發射機之高效率波包放大器與功率放大器
★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現★ 鐵電可變電容之設計與製作
★ 用於功率放大器效率提升之鐵電基可調式匹配網路★ 基於全通網路之類比式及數位式相位偏移器
★ 使用鐵電可變電容及PIN二極體之頻率可調天線★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作
★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器★ 具矽基板貫孔之鐵電可變電容的製作與量測
★ 矽基板貫孔的製作和量測★ 使用鐵電可變電容之頻率可調微帶貼片天線
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-7以後開放)
摘要(中) 本論文主要聚焦於功率放大器的設計與討論,我們分別使用了 TSMC 90-nm CMOS 製程和 WIN 100-nm GaAs pHEMT 製程來實現各種不同架構的功率放大器。

在第二章,我們接續實驗室學長的電路,並重新設計一使用 TSMC 90-nm CMOS 製程並操作於 Q 頻段中心頻率 40 GHz 之功率放大器。本電路為一差動電路,在輸入及輸出端使用變壓器來進行匹配,同時使訊號進行單端與雙端的轉換。我們使用中和電容技術來達到最佳的穩定效果與最大可用增益,且使用 Cascode 架構使操作電壓提高,以此來提升輸出功率。小訊號量測結果與模擬結果整體非常接近,而大訊號量測結果在操作頻率 40 GHz下,OP1dB 為12.9 dBm,在 P1dB 下的 PAE 為 7.28%。

在第三章,我們設計一使用 WIN 100-nm GaAs pHEMT 製程並操作於 Q 頻段中心頻率為 40 GHz之功率放大器,其架構為二級平衡式功率放大器,並使用 Lange coupler 來實現二路功率合併。我們參考了之前的下線結果,該結果為兩個單級功率放大器,這兩個單級功率放大器電晶體尺寸分別與本章電路驅動級和輸出級相同。透過對這兩個單級功率放大器進行偵錯與重新模擬,並將此結果應用於本章電路設計。量測結果在操作頻率 40 GHz 下增益約為 13.4dB,OP1dB 為 27.8 dBm,在 P1dB 下的 PAE 結果為 27.7%。

在第四章,我們設計一使用 WIN 100-nm GaAs pHEMT 製程並操作於 E 頻段中心頻率為 80 GHz之功率放大器,其架構為三級放大器。我們參考了之前的下線的一單級功率放大器,此單級功率放大器電晶體尺寸與本章電路第二和第三級相同。透過對此單級功率放大器進行偵錯與重新模擬,並將此結果應用於本章電路設計。量測結果在操作頻率 80GHz 下增益約為 12.4 dB,OP1dB 為 22.7 dBm,在 P1dB 下 PAE 為 29.4%。
摘要(英) This thesis mainly focuses on the design and analysis of power amplifiers. We use the TSMC 90-nm CMOS process and WIN 100-nm GaAs pHEMT process to implement various power amplifier architectures.

In Chapter 2, we continue the work of previous lab members and redesign a power amplifier using the TSMC 90-nm CMOS process, operating at a center frequency of 40 GHz in the Q-Band. This circuit is a differential architecture, using transformers at the input and output for matching, and to achieve single-ended to differential signal conversion. We used neutralization capacitor technology to achieve optimal stability and maximum available gain, and employed a cascode architecture to increase the operating voltage, thereby enhancing the output power. The small-signal measurement results closely match the simulation results, and the large-signal measurement results at the operating frequency of 40 GHz show the OP1dB is 12.9 dBm and the PAE is 7.28% at P1dB.

In Chapter 3, we design a power amplifier using the WIN 100-nm GaAs pHEMT process, operating at a center frequency of 40 GHz in the Q-Band. This power amplifier has a two-stage balanced architecture and uses a Lange coupler for power combining. We referenced previous results, which were for two single-stage power amplifiers with transistor sizes corresponding to the driver and output stages of the circuit in this chapter. Through debugging and re-simulating these two single-stage power amplifiers, we applied the findings to the design in this chapter. The measurement results show a gain of approximately 13.4 dB, OP1dB is 27.8 dBm, and the PAE is 27.7% at P1dB, measured at 40 GHz.

In Chapter 4, we design a power amplifier using the WIN 100-nm GaAs pHEMT process, operating at a center frequency of 80 GHz in the E-Band. This amplifier has a three-stage architecture. We referenced a previously fabricated single-stage power amplifier with transistor sizes corresponding to the second and third stages of the circuit in this chapter. Through debugging and re-simulating this single-stage power amplifier, we applied the findings to the design in this chapter. The measurement results show a gain of approximately 12.4 dB, OP1dB is 22.7 dBm, and the PAE is 29.4% at P1dB, measured at 80 GHz.
關鍵字(中) ★ 功率放大器
★ Q 頻段
★ E 頻段
★ 砷化鎵
關鍵字(英) ★ Power Amplifier
★ Q-band
★ E-band
★ GaAs
★ CMOS
論文目次 摘要. . . I
Abstract . . . III
目錄. . . V
圖目錄. . . VII
表目錄. . . XI
第一章緒論. . . 1
1.1研究動機與背景. . . 1
1.2論文架構. . . 2
第二章Q頻段使用中和電容技術CMOS功率放大器. . . 3
2.1簡介. . . 3
2.2電路設計. . . 4
2.2.1先前下線結果之電路偵錯與重新模擬. . . 4
2.2.2電容中和技術. . . 8
2.2.3電路重新設計. . . 10
2.3電路模擬與量測. . . 16
2.3.1模擬結果. . . 16
2.3.2量測結果. . . 21
2.4結果與討論. . . 24
第三章Q頻段砷化鎵二級平衡式功率放大器. . . 27
3.1簡介. . . 27
3.2電路設計. . . 28
3.2.1電晶體尺寸及偏壓選擇. . . 28
3.2.2先前下線結果之電路偵錯與重新模擬. . . 32
3.2.3整體電路設計概述. . . 41
3.3電路模擬與量測. . . 48
3.3.1電路模擬. . . 48
3.3.2量測結果. . . 55
3.4電路偵錯與重新模擬. . . 62
3.5結果與討論. . . 64
第四章E頻段砷化鎵三級功率放大器. . . 67
4.1簡介. . . 67
4.2電路設計. . . 68
4.2.1電晶體尺寸及偏壓選擇. . . 68
4.2.2先前下線結果之電路偵錯與重新模擬. . . 71
4.2.3整體電路設計概述. . . 75
4.3電路模擬與量測. . . 79
4.3.1電路模擬. . . 79
4.3.2量測結果. . . 83
4.4電路偵錯與重新模擬. . . 87
4.5結果與討論. . . 88
第五章結論. . . 91
參考文獻. . . 93
參考文獻 [1] H.-Y. Chang, H. Wang, M. Yu, and Y. Shu, “A 77-GHz MMIC power amplifier for automotive radar applications,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 4, pp. 143-145, Apr. 2003.
[2] C .- A. Tsai, “CMOS SPDT switches and medium power amplifier for 5G millimeter-wave bands,”Master′s thesis, National Central University, 2023.
[3] H. Asada, K. Matsushita, K. Bunsen, K. Okada, and A. Matsuzawa, “A 60 GHz CMOS power amplifier using capacitive cross-coupling neutralization with 16% PAE,” Eur. Microw. Conf, pp. 1115-1118, Oct. 2011.
[4] W.-C. Sun and C.-N. Kuo, “A 19.1% PAE, 22.4-dBm 53-GHz parallel power combining power amplifier with stacked-FET techniques in 90-nm CMOS,” IEEE MTT-S Int. Microw. Symp, pp. 327-330, Jun. 2019.
[5] M. Edwards and J. Sinsky, “A new criterion for linear 2-port stability using a single geometrically derived parameter,” IEEE Trans. Microw. Theory Techn., vol. 40, no. 12, pp. 2303-2311, Dec. 1992.
[6] H. Shigematsu, T. Hirose, F. Brewer, and M. Rodwell, “Millimeter-wave CMOS circuit design,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 2, pp. 472-477, Feb. 2005.
[7] J. Jia, X. Wang, and J. Wen, “A 40-GHz power amplifier with output power of 15.2 dBm in 65-nm CMOS,” IEEE MTT-S Int. Wireless Symp, pp. 13, May 2021.
[8] M. A. Masud, H. Zirath, M. Ferndahl, and H.-O. Vickes, “90 nm CMOS MMIC amplifier,” pp. 201-204, Jun. 2004.
[9] Y. Jin, M. A. Sanduleanu, E. A. Rivero, and J. R. Long, “A Millimeter-Wave power amplifier with 25 dB power gain and+8dBm saturated output power,” Eur. Solid State Circuits Conf. (ESSCIRC), pp. 276-279, Sep. 2007.
[10] S. N. Ali, P. Agarwal, L. Renaud, R. Molavi, S. Mirabbasi, P. P. Pande, and D. Heo, “A 40% PAE frequency-reconfigurable CMOS power amplifier with tunable gate-drain neutralization for 28-GHz 5G radios,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 5, pp. 2231-2245, May 2018.
[11] S. Shakib, H.-C. Park, J. Dunworth, V. Aparin, and K. Entesari, “A highly efficient and linear power amplifier for 28-GHz 5G phased array radios in 28-nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 3020-3036, Dec. 2016.
[12] Y.-C. Lee, T.-Y. Chen, and J. Y.-C. Liu, “An adaptively biased stacked power amplifier without output matching network in 90 nm CMOS,” IEEE MTT-S Int. Microw. Symp, pp. 1667-1690, Jun. 2017.
[13] H.-T. Dabag, B. Hana , F. Golcuk, A. Agah, J. F. Buckwalter, and P. M. Asbeck, “Analysis and design of stacked-FET millimeter-wave power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1543-1556, Apr. 2013.
[14] P. Yan, J. Chen, W. Hong, and X. Jiang, “A 42 to 56 GHz wide band CMOS power amplifier,” Millim. Waves THz Technol. Workshop (UCMMT), pp. 12, Sep. 2013.
[15] M. Bassi, J. Zhao, A. Bevilacqua, A. Ghilioni, A. Mazzanti, and F. Svelto, “A 40-67 GHz power amplifier with 13 dBm Psat and 16% PAE in 28 nm CMOS LP,” IEEE J. Solid-State Circuits, vol. 50, no. 7, pp. 1618-1628, Mar. 2015.
[16] C.-W. Wu, Y.-H. Lin, Y.-H. Hsiao, C.-F. Chou, Y.-C. Wu, and H. Wang, “Design of a 60-GHz high-output power stacked-FET power amplifier using transformer-based voltage-type power combining in 65-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 10, pp. 4595-4607, Oct. 2018.
[17] M. J. Zavarei, K. Kim, and H.-J. Song, “A 26-40 GHz wideband power amplifier with transformer-based high-order matching networks in 28-nm CMOS FD-SOI,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 9, pp. 1079-1082, Sep. 2022.
[18] J. Kim, H. Dabag, P. Asbeck, and J. F. Buckwalter, “Q-band and W-band power amplifiers in 45-nm CMOS SOI,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1870-1877, Jun. 2012.
[19] J. Zhang, D. Wang, W. Zhu, M. Zhai, X. Yi, and Y. Wang, “A Ka-band mutual coupling resilient stacked-FET power amplifier with 21.2 dBm OP1dB and 27.6% PAE1dB in 45-nm CMOS SOI,” IEEE Trans. Microw. Theory Techn., vol. 7, pp. 147-150, 2024.
[20] T. Kim, H. Jeong, S. Jang, J. Lee, and C. Park, “Ka-band CMOS power amplifier using stacked structure with cascode-like operation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 71, no. 4, pp. 1949-1953, Apr. 2024.
[21] T. Kim and C. Park, “Ka-band three-stacked CMOS power amplifier with LC shunt-feedback to enhance gain and stability,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 71, no. 4, pp. 1969-1973, Apr. 2024.
[22] G. Lv, W. Chen, X. Chen, F. M. Ghannouchi, and Z. Feng, “A compact Ka/Q dual-band GaAs MMIC Doherty power amplifier with simplified offset lines for 5G applications,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 7, pp. 3110-3121, Jul. 2019.
[23] N. Hosseinzadeh and A. Medi, “Wideband 5 W Ka-band GaAs power amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 8, pp. 622-624, Aug. 2016.
[24] Y. Chen, C.-N. Chen, C.-C. Chiong, and H. Wang, “A compact 40 GHz Doherty power amplifier with 21% PAE at 6-dB power back off in 0.1- µ m GaAs pHEMT process,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 8, pp. 545-547, Aug. 2019.
[25] Z. Wang, D. Hou, P. Zhou, Z. Li, Y. Lu, J. Chen, and W. Hong, “A 37-GHz asymmetric Doherty power amplifier with 28-dBm Psat and 32% back-off PAE in 0.1-µm GaAs process,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 2, pp. 1391-1400, Feb. 2022.
[26] J.-H. Tsai, Y.-C. Yu, and C.-L. Lin, “A 36-39 GHz power amplifier with built-in linearizer using 0.1-µm GaAs pHEMT process,” in Proc. 2023 Photon. Electromagn. Res. Symp. (PIERS), Jul. 2023, pp. 1004-1007.
[27] H.-Y. Lin and W.-T. Li, “A Ka-Band power amplifier with phase compensation technique applied to 5G phased array,” in Proc. 2018 Asia-Pac. Microw. Conf. (APMC), Nov. 2018, pp. 61-63.
[28] X. Xia, Z. Wang, Z. Li, S. Zheng, D. Tang, D. Hou, and W. Hong, “A 26/38-GHz dual-band filtering balanced power amplifier MMIC for 5G mobile communications,” IEEE Microw. Wireless Technol. Lett., vol. 33, no. 4, pp. 419-422, Apr. 2023.
[29] A. Alizadeh, M. Frounchi, and A. Medi, “On design of wideband compact-size Ka/Q-band high-power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 6, pp. 1831-1842, Jun. 2016.
[30] G. Lv, W. Chen, X. Chen, and Z. Feng, “An energy-efficient Ka / Q dual-band power amplifier MMIC in 0.1-µm GaAs process,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 6, pp. 530-532, Jun. 2018.
[31] H. Xie, Y. J. Cheng, Y. R. Ding, L. Wang, and Y. Fan, “A high efficiency 28 GHz/39 GHz dual-band power amplifier MMIC for 5G communication,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 11, pp. 1227-1230, Nov. 2021.
[32] B.-W. Huang, Z.-H. Fu, and K.-Y. Lin, “A 28/39 GHz dual-band power amplifier using optimal matching contour in GaAs pHEMT,” in Proc. 2021 IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT), Aug. 2021, pp. 13.
[33] Y. Kwon, K. Kim, E. Sovero, and D. Deakin, “Watt-level Ka-band Q-band MMIC power amplifiers operating at low voltages,” IEEE Trans. Microw. Theory Techn., vol. 48, no. 6, pp. 891-897, Jun. 2000.
[34] Y.-C. Hsieh, G.-J. Lin, Z.-M. Tsai, and T.-H. Chen, “Design and analysis of a high linearity full Ka-band stacked-FET power amplifier using 0.15-µm GaAs pHEMT process,” IEEE Microw. Wireless Technol. Lett., vol. 34, no. 4, pp. 427-430, Apr. 2024.
[35] D. P. Nguyen and A.-V. Pham, An ultra compact watt-level Ka-band stacked-FET power amplifier, IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 516-518, Jul. 2016.
[36] H. Xie, Y. Fan, W. Y. Li, L. Wang, and Y. J. Cheng, “A Ka-Band watt-level high-efficiency Doherty amplifier MMIC in 90-nm GaAs technology,” IEEE Microw. Wireless Technol. Lett., vol. 33, no. 2, pp. 204-207, Feb. 2023.
[37] J. C. Mayeda, D. Y. C. Lie, and J. Lopez, “A highly efficient 18-40 GHz linear power amplifier in 40-nm GaN for mm-wave 5G,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 8, pp. 1008-1011, Aug. 2021.
[38] F. Guo, Y. Xu, W. Wang, Z. Chen, C. Luo, and H. Tao, “Broadband GaN-based power amplifier MMIC for V-band with saturated output power over 2 W,” IEEE Microw. Wireless Compon. Lett., vol. 34, no. 5, pp. 532-535, May 2024.
[39] S. Hu, F. Wang, and H. Wang, “A 28-/37-/39-GHz linear Doherty power amplifier in silicon for 5G applications,” IEEE J. Solid-State Circuits, no. 6, pp. 1586-1599, Jun. 2019.
[40] N. Kalantari and J. F. Buckwalter, “A 19.4 dBm, Q-band class-E power amplifier in a 0.12 µm SiGe BiCMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 283-285, 2010.
[41] B.-Z. Lu, Y.-C. Wu, C.-C. Chiong, and H. Wang, “A 78-93 GHz power amplifier with 19.6-dBm Psat and 12.8% PAEpeak in 0.1-µm GaAs pHEMTfor radio astronomical receiver system,” in Proc. 2019 IEEE Int. Symp. Radio-Freq. Integr. Technol. (RFIT), Aug. 2019, pp. 13.
[42] F. Zhu and G. Luo, “A W-band balanced power amplifier in 0.1-µm GaAs pHEMT process,” in Proc. 2020 IEEE MTT-S Int. Wireless Symp. (IWS), Sep. 2020, pp. 13.
[43] C. Yang, X. Xu, H. Lu, J. Chen, and D. Hou, “A broadband E-band driver amplifier in 0.1 µm GaAs pHEMT technology,” in Proc. 2020 IEEE MTT-S Int. Wireless Symp. (IWS), vol. 1, Aug. 2022, pp. 13.
[44] A. Bessemoulin, M. Rodriguez, J. Tarazi, G. McCulloch, A. E. Parker, and S. J. Mahon, “Compact W-band PA MMICs in commercially available 0.1-µmm GaAs pHEMT process,” in Proc. 2015 IEEE Compound Semicond. Integr. Circuit Symp. (CSICS), Oct. 2015, pp. 14.
[45] M. Gavell, G. Granström, C. Fager, S. E. Gunnarsson, M. Ferndahl, and H. Zirath, “An E-band analog predistorter and power amplifier MMIC chipset,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 1, pp. 31-33, Jan. 2018.
[46] E. Camargo, J. Schellenberg, L. Bui, and N. Estella, “Power GaAs MMICs for E-band communications applications,” in Proc. 2014 IEEE MTT-S Int. Microw. Symp. (IMS), Jun. 2014, pp. 14.
[47] B. Cimbili, C. Friesicke, F. v. Raay, S. Wagner, M. Bao, and R. Quay, “2.6- and 4-W E-band GaN power amplifiers with a peak efficiency of 22% and 15.3%,” IEEE Microw. Wireless Technol. Lett., vol. 33, no. 6, pp. 847-850, Jun. 2023.
[48] W. Shaobing, G. Jianfeng, W. Weibo, and Z. Junyun, “W-band MMIC PA with ultrahigh power density in 100-nm AlGaN/GaN technology,” IEEE Trans. Electron Devices, vol. 63, no. 10, pp. 3882-3886, Oct. 2016.
[49] G. Park, S. Park, and S. Jeon, “A high-efficiency E-band power amplifier with optimized output matching network in a 28-nm bulk CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 71, no. 3, pp. 1032-1036, Mar. 2024.
[50] D. Zhao and P. Reynaert, “An E-band power amplifier with broadband parallel-series power combiner in 40-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 683-690, Feb. 2015.
[51] T. Xi, S. Huang, S. Guo, P. Gui, D. Huang, and S. Chakraborty, “High-efficiency E-band power amplifiers and transmitter using gate capacitance linearization in a 65-nm CMOS process,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 3, pp. 234-238, Mar. 2017.
[52] H. Jia, B. Chi, L. Kuang, and Z. Wang, “A W-band power amplifier utilizing a miniaturized marchand balun combiner,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 719-725, Feb. 2015.
[53] Z. Xu, Q. J. Gu, and M.-C. F. Chang, “A 100-117 GHz W-band CMOS power amplifier with on-chip adaptive biasing,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 547-549, Oct. 2011.
[54] D. del Rio, I. Gurutzeaga, A. Beriain, H. Solar, and R. Berenguer, “A compact, wideband, and temperature robust 67- 90 GHz SiGe power amplifier with 30% PAE,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 5, pp. 351-353, May 2019.
[55] D. Pepe, D. Zito, A. Pallotta, and L. Larcher, “1.29-W/mm2 23 dBm 66-GHz power amplifier in 55-nm SiGe BiCMOS with in-line coplanar transformer power splitters and combiner,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 12, pp. 11461148, Dec. 2017.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2024-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明