博碩士論文 111521097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:143 、訪客IP:3.140.188.250
姓名 李昀儒(Yun-Ju Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 智慧型控制動態電壓調節器 改善負載電壓穩定性
(Intelligent Controlled Dynamic Voltage Restorer for Improving Load Voltage Stability)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 在本研究中,提出了一種智慧型控制之動態電壓調節器(Dynamic Voltage Restorer, DVR)來穩定電網電壓在電壓驟升、驟降和不平衡時之負載電壓。由於意外情況、負載變化以及基於再生能源之分散式發電機(Distributed Generators, DGs)高滲透率,異常的電網電壓將嚴重導致設備損壞和敏感負載跳脫。因此,開發了一種DVR來在異常電網電壓條件下以穩定負載電壓。所開發的DVR係基於同步旋轉座標軸方法,並採用雙二階廣義積分鎖相迴路(Dual Second-Order Generalized-Integrator-Phase-Locked-Loop, DSOGI-PLL)進行電網同步。此外,本文所發展的DVR在不同負載中使用兩種不同控制策略,分別為,同相補償策略和能量優化補償策略。再者,為了有效提高所開發DVR的電壓補償性能,首次提出了兩種新型柴比雪夫機率模糊神經網路(Chebyshev probabilistic fuzzy neural network, CPFNN)控制器和柴比雪夫派翠機率模糊神經網路(Chebyshev Petri probabilistic fuzzy neural network, CPPFNN)來取代傳統的比例積分諧振(Proportional-Integral-Resonant , PIR)、傳統比例積分(Proportional-Integral, PI)和模糊類神經網路(Fuzzy Neural Network, FNN)控制器。詳細推導了所提出的CPFNN和CPPFNN控制器的網絡結構和線上學習算法。最後,藉由實驗結果驗證使用所提出的CPFNN和CPPFNN控制器的智慧型DVR在電網電壓驟升、驟降和不平衡時對負載電壓改善的有效性。
摘要(英) An intelligent dynamic voltage restorer (DVR) is proposed in this study to stabilize and balance the load voltage during grid voltage swell, sag and imbalance. Owing to the contingency, unexpected load change and the high penetration rate of the renewable energy source-based distributed generators (DGs), the abnormal grid voltage conditions will severely lead to the equipment damage and sensitive loads tripping. Thus, a DVR is developed to stabilize the load voltage during the abnormal grid voltage conditions. The developed DVR is based on the synchronous reference frame and the dual second-order generalized integrator phase locked loop (DSOGI-PLL) is adopted for the grid synchronization in this study. Moreover, the developed DVR adapts the in-phase method and energy optimized method in different loads. To effectively improve the voltage compensation performance of the developed DVR, two novel Chebyshev probabilistic fuzzy neural network (CPFNN) controllers and Chebyshev Petri probabilistic fuzzy neural network (CPPFNN) are firstly proposed to replace the traditional proportional-integral-resonant (PIR), traditional proportional-integral (PI) and fuzzy neural network (FNN) controllers. The network structure and the online learning algorithm of the proposed CPFNN and CPPFNN controllers are derived in detailed. Finally, the effectiveness of the intelligent DVR using the proposed CPFNN or CPPFNN controllers for the load voltage improvement during grid voltage swell, sag and imbalance are certified by some experimental results.
關鍵字(中) ★ 動態電壓調節器
★ 電力系統故障
★ 同相補償
★ 能量優化補償
★ 柴比雪夫派翠機率模糊類神經網路
關鍵字(英) ★ DVR
★ in-phase compensation
★ energy-optimized compensation
★ power system faults
★ Chebyshev Petri probabilistic fuzzy neural network(CPPFNN)
論文目次 摘要 I
Abstract VI
圖目錄 XII
表目錄 XV
1 第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 本文貢獻 5
1.4 論文大綱 6
2 第二章 規範與DVR補償策略介紹 7
2.1 簡介 7
2.2 微電網規範 7
2.2.1 IEEE 1159-2019 7
2.2.2 IEEE 1459-2010 8
2.3 DVR電壓補償方法 8
2.3.1 同相補償策略 8
2.3.2 預降補償策略 9
2.3.3 能量優化補償策略 10
2.3.4 電壓補償策略之研討 11
3 第三章 動態電壓調節器系統架構與控制策略 13
3.1 簡介 13
3.2 三相座標軸轉換 13
3.3 鎖相迴路 15
3.3.1 同步旋轉座標軸之鎖相迴路 15
3.3.2 正負序成份之探討 16
3.3.3 二階廣義積分器之鎖相迴路 23
3.4 DVR數學模型建立 24
3.4.1 純電阻性負載之數學模型推導 24
3.4.2 電感性負載之數學模型推導 26
3.5 動態電壓調節器之閉迴路控制 27
3.5.1 純電阻性負載之閉迴路控制 28
3.5.2 電感性負載之閉迴路控制 28
3.5.3 電壓比例積分控制器之設計 29
3.5.4 電壓比例積分諧振控制器之設計 31
3.5.5 電流比例積分控制器之設計 36
3.6 動態電壓調節器控制架構 38
3.6.1 純電阻性負載控制策略 38
3.6.2 電感性負載控制策略 41
3.6.3 電壓故障之偵測 44
4 第四章 智慧型模糊類神經網路 45
4.1 簡介 45
4.2 純電阻負載之智慧型控制 45
4.2.1 柴比雪夫機率模糊類神經網路架構 45
4.2.2 柴比雪夫機率模糊類神經網路線上學習法則 48
4.2.3 柴比雪夫機率模糊類神經網路收斂性分析 50
4.3 電感性負載之智慧型控制 52
4.3.1 柴比雪夫派翠機率模糊類神經網路架構 52
4.3.2 柴比雪夫派翠機率模糊類神經網路線上學習法則 56
4.3.3 柴比雪夫派翠機率模糊類神經網路收斂性分析 58
5 第五章 動態電壓調節器之模擬結果 61
5.1 純電阻性負載控制策略之模擬結果 61
5.1.1 情境一 : 線間電壓平衡驟降36 % 61
5.1.2 情境二 : 線間電壓平衡驟升20 % 64
5.1.3 情境三 : 電壓不平衡7% 67
5.2 電感性負載控制策略之模擬結果 74
5.2.1 情境一 : 線間電壓平衡驟降36 % 75
5.2.2 情境二 : 線間電壓平衡驟升20 % 82
5.2.3 情境三 : 線間電壓驟升20 %、驟降36 % 89
6 第六章 動態電壓調節器硬體規劃與實驗結果 95
6.1 簡介 95
6.2 儲能系統介紹 96
6.2.1 磷酸鋰鐵電池 96
6.2.2 電池保護裝置 97
6.2.3 電池平衡裝置 97
6.3 儲能系統硬體設備 98
6.3.1 儲能系統變流器 99
6.4 DVR系統週邊電路 100
6.4.1 交流電流回授電路 101
6.4.2 交流電壓回授電路 102
6.4.3 直流電壓回授電路 103
6.4.4 過電壓與過電流保護裝置 103
6.4.5 開關互鎖電路 104
6.4.6 數位訊號處理器 106
6.4.7 DAC電路 108
6.5 三相可控交流電源供應器 110
6.6 單相變壓器 111
6.7 DVR純電阻性負載之控制策略實驗結果 112
6.7.1 情境一 : 線間電壓平衡驟降36 % 112
6.7.2 情境二 : 線間電壓平衡驟升20% 115
6.7.3 情境三 : 電壓不平衡7 % 118
6.8 DVR電感性負載之控制策略實驗結果 126
6.8.1 情境一 : 線間電壓平衡驟降36% 126
6.8.2 情境二 : 線間電壓平衡驟升20 % 133
6.8.3 情境三 : 線間電壓驟升20 %、驟降36 % 140
7 第七章 結論與未來展望 146
7.1 結論 146
7.2 未來展望 146
8 參考文獻 147
9 作者簡歷 154
參考文獻 [1] S. F. Gahtani, A. B. Barnawi, H. Z. Azazi, S. M. Irshad, J K. Bhutto, H. M. Majahar, E. Z. M. Salem, "A new technique implemented in synchronous reference frame for DVR control uder severe sag and swell conditions," IEEE Access, vol. 10, pp. 25565-25579, Mar. 2022.
[2] D. Guillen, G. Escobar, A. Llamas, and J. C. M. Maldonado, "A sequence impedance matrix approach to current unbalance detection for grid code fulfillment," IEEE Transactions on Power Delivery, vol. 36, no. 3, pp. 1640-1650, Jun. 2021.
[3] U. Singh, R. Solomon, and O. A. Mousavi, "Monitoring-based localization of unbalances and root cause analysis in low-voltage distribution systems," IEEE Systems Journal, vol. 17, no. 3, pp. 4177-4188, Sep. 2023.
[4] "IEEE recommended practice for powering and grounding electronic equipment," IEEE Std 1100-2005.
[5] C. Fu, C. Zhang, G. Zhang, C. Zhang, and Q. Su, "Finite-time command filtered control of three-phase AC/DC converter under unbalanced grid conditions," IEEE Transactions on Industrial Electronics, vol. 70, no. 7, pp. 6876-6886, Jul. 2023.
[6] Y. J. Kim, "Development and analysis of a sensitivity matrix of a three-phase voltage unbalance factor," IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3192-3195, May. 2018.
[7] "IEEE recommended practice for the planning and design of the microgrid," IEEE Std 2030.9-2019.
[8] "IEEE guide for identifying and improving voltage quality in power systems," IEEE Std 1250-2018.
[9] C. N. M. Ho and H. S. H. Chung, "Implementation and performance evaluation of a fast dynamic control scheme for capacitor-supported interline DVR," IEEE Transactions on Power Electronics, vol. 25, no. 8, pp. 1975-1988, Aug 2010.
[10] J. G. Nielsen and F. Blaabjerg, "A detailed comparison of system topologies for dynamic voltage restorers," IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1272-1280, Sep. 2005.
[11] P. T. Ogunboyo, R. Tiako, and I. E. Davidson, "Effectiveness of dynamic voltage restorer for unbalance voltage mitigation and voltage profile improvement in secondary distribution system," Canadian Journal of Electrical and Computer Engineering, vol. 41, no. 2, pp. 105-115, May. 2018.
[12] A. M. Rauf and V. Khadkikar, "An enhanced voltage sag compensation scheme for dynamic voltage restorer," IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 2683-2692, May. 2015.
[13] C. Tu, Q. Guo, F. Jiang, H. Wang, and Z. Shuai, "A comprehensive study to mitigate voltage sags and phase jumps using a dynamic voltage restorer," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp. 1490-1502, Jun. 2020.
[14] M. Pradhan and M. K. Mishra, "Dual P-Q theory based energy-optimized
dynamic voltage restorer for power quality improvement in a distribution system," IEEE Transactions on Industrial Electronics, vol. 66, no. 4, pp. 2946-2955, Apr. 2019.
[15] Y. Hu, Y. Deng, Q. Liu, and X. He, "Asymmetry three-level gird-connected current hysteresis control with varying bus voltage and virtual oversample method," IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 3214-3222, Jun. 2014.
[16] H. Mao, X. Yang, Z. Chen, and Z. Wang, "A hysteresis current controller for single-phase three-level voltage source inverters," IEEE Transactions on Power Electronics, vol. 27, no. 7, pp. 3330-3339, Jul. 2012.
[17] F. C. Machado, J. L. M. Ramos, M. B. Villarejo, J. M. M. Ortega, and J. A. R. Macías, "Reduced reference frame transform: deconstructing three-phase four-wire systems," IEEE Access, vol. 8, pp. 143021-143032, Aug. 2020.
[18] R. Navid and G. Joos"Performance investigation of a current-controlled voltage-regulated pwm rectifier in rotating and stationary frames," IEEE Transactions on Industrial Electronics, vol. 42, no. 4, pp. 396-401, Aug. 1995.
[19] G. Franceschini, E. Lorenzani, and G. Buticchi, "Saturation compensation strategy for grid connected converters based on line frequency transformers," IEEE Transactions on Energy Conversion, vol. 27, no. 2, pp. 229-237, Jun. 2012.
[20] T. S. Lee and J. H. Liu, "Modeling and control of a three-phase four-switch pwm voltage-source rectifier in d-q synchronous frame," IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2476-2489, Sep. 2011.
[21] M. Trabelsi, A. N. Alquennah, and H. Vahedi, "Review on single-dc-source multilevel inverters: voltage balancing and control techniques," IEEE Open Journal of the Industrial Electronics Society, vol. 3, pp. 711-732, Nov. 2022.
[22] Z. Elkady, N. A. Rahim, A. A. Mansour, and F. M. Bendary, "Enhanced dvr control system based on the harris hawks optimization algorithm," IEEE Access, vol. 8, pp. 177721-177733, Oct. 2020.
[23] D. Prasad and C. Dhanamjayulu, "Solar pv-fed multilevel inverter with series compensator for power quality improvement in grid-connected systems," IEEE Access, vol. 10, pp. 81203-81219, Aug. 2022.
[24] F. B. Ajaei, S. Afsharnia, A. Kahrobaeian, and S. Farhangi, "A fast and effective control scheme for the dynamic voltage restorer," IEEE Transactions on Power Delivery, vol. 26, no. 4, pp. 2398-2406, Oct. 2011.
[25] L. Du, M. Li, Z. Tang, L. Xiong, X. Ma, and G. Tang, "A fast positive sequence components extraction method with noise immunity in unbalanced grids," IEEE Transactions on Power Electronics, vol. 35, no. 7, pp. 6682-6685, Jul. 2020.
[26] T. Hao, F. Gao, and T. Xu, "Fast symmetrical component extraction from unbalanced three-phase signals using non-nominal dq -transformation," IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9134-9141, Nov. 2018.
[27] X. Chen, L. Yan, X. Zhou, and H. Sun, "A novel dvr-ess-embedded wind-energy conversion system," IEEE Transactions on Sustainable Energy, vol. 9, no. 3, pp. 1265-1274, Jul. 2018.
[28] A. O. Ibrahim, T. H. Nguyen, D. C. Lee, and S. C. Kim, "A fault ride-through technique of dfig wind turbine systems using dynamic voltage restorers," IEEE Transactions on Energy Conversion, vol. 26, no. 3, pp. 871-882, 2011.
[29] M. Reyes, P. Rodriguez, S. Vazquez, A. Luna, R. Teodorescu, and J. M. Carrasco, "Enhanced decoupled double synchronous reference frame current controller for unbalanced grid-voltage conditions," IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 3934-3943, Sep. 2012.
[30] J. W. Moon, J. W. Park, D.W. Kang, and J.M. Kim, "A control method of hvdc-modular multilevel converter based on arm current under the unbalanced voltage condition," IEEE Transactions on Power Delivery, vol. 30, no. 2, pp. 529-536, Apr2015.
[31] J. Hu and Y. He, "Reinforced control and operation of dfig-based wind-power-generation system under unbalanced grid voltage conditions," IEEE Transactions on Energy Conversion, vol. 24, no. 4, pp. 905-915, Dec. 2009.
[32] X. Zhang, Z. Fu, Y. Xiao, G. Wang, and D. Xu, "Control of parallel three-phase pwm converters under generalized unbalanced operating conditions," IEEE Transactions on Power Electronics, vol. 32, no. 4, pp. 3206-3215, Apr. 2017.
[33] M. Hamouda, H. F. Blanchette, and K. A. Haddad, "Unity power factor operation of indirect matrix converter tied to unbalanced grid," IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1095-1107, Feb. 2016.
[34] H. Xu, J. Hu, and Y. He, "Operation of wind-turbine-driven DFIG systems under distorted grid voltage conditions: analysis and experimental validations," IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2354-2366, May. 2012.
[35] J. Chen, W. Zhang, B. Chen, and Y. Ma, "Improved vector control of brushless doubly fed induction generator under unbalanced grid conditions for offshore wind power generation," IEEE Transactions on Energy Conversion, vol. 31, no. 1, pp. 293-302, Mar. 2016.
[36] J. Fei and J. Yang, "Chebyshev fuzzy neural network super-twisting terminal sliding-mode control for active power filter," IEEE Internet of Things Journal, vol. 10, no. 15, pp. 13587-13600, Aug. 2023.
[37] Y. Dong, G. Zhang, G. He, and W. Si, "A novel control strategy for uninterruptible power supply based on backstepping and fuzzy neural network," IEEE Access, vol. 11, pp. 5306-5313, Jan. 2023.
[38] J. Fei, Z. Wang, and Y. Fang, "Self-evolving recurrent chebyshev fuzzy neural sliding mode control for active power filter," IEEE Transactions on Industrial Informatics, vol. 19, no. 3, pp. 2729-2739, Mar. 2023.
[39] J. Fei and L. Liu, "Real-time nonlinear model predictive control of active power filter using self-feedback recurrent fuzzy neural network estimator," IEEE Transactions on Industrial Electronics, vol. 69, no. 8, pp. 8366-8376, Aug. 2022.
[40] M. M. Mansouri, S. Hadjeri, and M. Brahami, "New method of detection, identification, and elimination of photovoltaic system faults in real time based on the adaptive neuro-fuzzy system," IEEE Journal of Photovoltaics, vol. 11, no. 3, pp. 797-805, May. 2021.
[41] R. J. Wai and R. Muthusamy, "Design of fuzzy-neural-network-inherited backstepping control for robot manipulator including actuator dynamics," IEEE Transactions on Fuzzy Systems, vol. 22, no. 4, pp. 709-722, Aug. 2014.
[42] L. Qi, W. Luan, X. S. Lu, and X. Guo, "Shared p-type logic petri net composition and property analysis: a vector computational method," IEEE Access, vol. 8, pp. 34644-34653, Feb. 2020.
[43] W. Luan, L. Qi, Z. Zhao, J. Liu, and Y. Du, "Logic petri net synthesis for cooperative systems," IEEE Access, vol. 7, pp. 161937-161948, Nov. 2019.
[44] E. A. Alzalab, A. M. E. Sherbeeny, M. A. E. Meligy, and H. T. Rauf, "Trust-based petri net model for fault detection and treatment in automated manufacturing systems," IEEE Access, vol. 9, pp. 157997-158009, Nov. 2021.
[45] X. Gao and X. Hu, "A petri net neural network robust control for new paste backfill process model," IEEE Access, vol. 8, pp. 18420-18425, Jan.2020.
[46] R. J. Rodriguez, S. Bernardi, and A. Zimmermann, "An evaluation framework for comparative analysis of generalized stochastic petri net simulation techniques," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 8, pp. 2834-2844, Aug. 2020.
[47] H. X. Li and Z. Liu, "A probabilistic neural-fuzzy learning system for stochastic modeling," IEEE Transactions on Fuzzy Systems, vol. 16, no. 4, pp. 898-908, Aug. 2008.
[48] M. Tripathy, R. P. Maheshwari, and H. K. Verma, "Power transformer differential protection based on optimal probabilistic neural network," IEEE Transactions on Power Delivery, vol. 25, no. 1, pp. 102-112, Jan. 2010.
[49] P. Chittora, A. Singh, and M. Singh, "Chebyshev functional expansion based artificial neural network controller for shunt compensation," IEEE Transactions on Industrial Informatics, vol. 14, no. 9, pp. 3792-3800, Sep. 2018.
[50] B. Y. Vyas, B. Das, and R. P. Maheshwari, "Improved fault classification in series compensated transmission line: comparative evaluation of chebyshev neural network training algorithms," IEEE Trans Neural Netw Learn Syst, vol. 27, no. 8, pp. 1631-42, Aug. 2016.
[51] A. Govindharaj, A. Mariappan, A. Ambikapathy, V. S. Bhadoria, and H. H. Alhelou, "Real-time implementation of adaptive neuro backstepping controller for maximum power point tracking in photo voltaic systems," IEEE Access, vol. 9, pp. 105859-105875, Aug. 2021.
[52] A. M. Zou, K. Dev Kumar, and Z. G. Hou, "Quaternion-based adaptive output feedback attitude control of spacecraft using chebyshev neural networks," IEEE Trans Neural Netw, vol. 21, no. 9, pp. 1457-71, Sep. 2010.
[53] S. G. Chen, F. J. Lin, C. H. Liang, and C. H. Liao, "Intelligent maximum power factor searching control using recurrent Chebyshev fuzzy neural network current angle controller for SynRM drive system," IEEE Transactions on Power Electronics, vol. 36, no. 3, pp. 3496-3511, Mar. 2021.
[54] "IEEE recommended practice for monitoring electric power quality," IEEE Std 1159-2019.
[55] "IEEE standard definitions for the measurement of electric power quantities under sinusoidal, nonsinusoidal, balanced, or unbalanced conditions." IEEE Std 1459-2010.
[56] G. I. Orfanoudakis, S. M. Sharkh, and M. A. Yuratich, "Combined positive-sequence flux estimation and current balancing for sensorless motor control under imbalanced conditions," IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 5099-5107, Sep. 2021.
[57] S. Golestan, J. M. Guerrero, J. C. Vasquez, A. M. Abusorrah, and Y. A. Turki, "Harmonic linearization and investigation of three-phase parallel-structured signal decomposition algorithms in grid-connected applications," IEEE Transactions on Power Electronics, vol. 36, no. 4, pp. 4198-4213, Apr. 2021.
[58] B. Hoepfner and R. Vick, "A three-phase frequency-fixed dsogi-pll with low computational effort," IEEE Access, vol. 11, pp. 34932-34941, Apr. 2023.
[59] A. T. Nguyen and D. C. Lee, "Advanced grid synchronization scheme based on dual SOGI-FLL for grid-feeding converters," IEEE Transactions on Power Electronics, vol. 37, no. 6, pp. 7218-7229, Jun. 2022.
[60] A. Ranjan, S. Kewat, and B. Singh, "DSOGI-PLL with in-loop filter based solar grid interfaced system for alleviating power quality problems," IEEE Transactions on Industry Applications, vol. 57, no. 1, pp. 730-740, Jun. 2021.
[61] Y. Zhou, T. Zang, B. Zhou, H. Hu, S. Chen, and H. Luo, "Impacts of dynamic frequency feedback loop in SOGI-PLL on low-frequency oscillation in an electric railway system," IEEE Transactions on Transportation Electrification, vol. 9, no. 3, pp. 4080-4093, Sep. 2023.
[62] M. B. Kim, G. W. Moon and M. J. Youn, "Synchronous PI decoupling control scheme for dynamic voltage restorer against a voltage sag in the power system," 35th Annual IEEE Power Electronics Specialists Conference, 2004.
[63] O. J. Moraka, P. S. Barendse, and M. A. Khan, "Dead time effect on the double-loop control strategy for a boost inverter," IEEE Transactions on Industry Applications, vol. 53, no. 1, pp. 319-326, Feb. 2017.
[64] B. P. Mcgrath, D. G. Holmes, and L. Mcnabb, "A signal conditioning antiwindup approach for digital stationary frame current regulators," IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 6036-6046, Nov. 2019.
[65] S. C. Peng, Z. L. Li, S. C. Gulipalli, and C. C. Chu, "Mitigating circulating currents of parallel three-phase vienna rectifiers with unbalanced filter inductors," presented at the 2022 IEEE Industry Applications Society Annual Meeting (IAS), Sep. 2022.
[66] L. Ren, F. Wang, Y. Shi, and L. Gao, "Coupling effect analysis and design principle of repetitive control based hybrid controller for SVG with enhanced harmonic current mitigation," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 5, pp. 5659-5669, Oct. 2022.
[67] T. Ye, N. Y. Dai, C. S. Lam, M. C. Wong, and J. M. Guerrero, "Analysis, design, and implementation of a quasi-proportional-resonant controller for a multifunctional capacitive-coupling grid-connected inverter," IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 4269-4280, Sep. 2016.
[68] F. J. Lin, K. H. Tan, C. F. Chang, M. Y. Li, and T. Y. Tseng, "Development of intelligent controlled microgrid for power sharing and load shedding," IEEE Transactions on Power Electronics, vol. 37, no. 7, pp. 7928-7940, May. 2022.
[69] K. H. Tan, "Squirrel cage induction generator system using wavelet petri fuzzy neural network control for wind power applications," IEEE Transactions on Power Electronics, pp. 1-1, Jul. 2015.
[70] H. Walvekar, H. Beltran, S. Sripad, and M. Pecht, "Implications of the electric vehicle manufacturers’ decision to mass adopt lithium-iron phosphate batteries," IEEE Access, vol. 10, pp. 63834-63843, Jun. 2022.
[71] 陳俊豪:〈利用智慧型控制之三相主動式電力濾波器的研製〉。碩士論文,電機工程學系,國立中央大學,民國106年。
[72] "Current Transducers, HY50-P."
[73] "Voltage Transducer, LV 25-P."
[74] "8/10/12-Bit Dual Voltage Output Digital-to-Analog Converter with SPI Interface."
[75] "User Manual, User’s Manual PCR-LE series, KIKUSUI."
指導教授 林法正(Faa-Jeng Lin) 審核日期 2024-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明