博碩士論文 111521113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.117.151.179
姓名 賴薈之(HUI-CHIH LAI)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於C/X頻帶之低功耗寬頻接收機前端電路之研製
(Design and Implementation of a Low-Power, Wideband Receiver Front End for C/X Band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文使用台灣積體電路製造股份有限公司 (tsmcTM) 018-μm CMOS 製程設計,論文總共3顆晶片,包含兩顆應用於C/X 頻帶之寬頻低雜訊放大器與一顆應用於C/X頻帶寬頻之接收機研製。
第一顆電路輸入匹配使用閘極與源極退化電感組成的變壓器來提升高頻的增益並改善輸入寬頻響應,第二級則使用疊接結構來實現高增益,用電感峰值技術,使增益平坦性提升,在輸出匹配減少功耗的同時提升輸出的匹配及改善增益平坦度,並縮小晶片面積,實現應用於C/X頻段的寬頻低雜訊放大器。此電路量測最高增益為13.45 dB,3-dB頻寬從5.7 - 13.1 GHz,最低雜訊指數為3.06 dB,線性度P1dB量測結果為-14 ~ -16.5 dBm,線性度IIP3則為-4 ~ -7 dBm,量測功耗為13.63 mW,晶片面積為1.17 × 1 mm^2。
第二顆電路則是電阻回授式反向器之寬頻低雜訊放大器,第一級為電阻回授式反向器搭配閘極與源極組成的變壓器來達到寬頻的輸入匹配,在第二級為了提高增益使用疊接架構,再加上汲極與源極組成的變壓器,來改善增益平坦度。雜訊匹配的部分針對高頻進行優化,通過犧牲低頻的雜訊來優化高頻的雜訊匹配,實現整個頻帶內更平坦的雜訊匹配。此電路量測到最高增益為12.01 dB,3-dB頻寬從4.5 - 12.6 GHz,最低雜訊指數為3.59 dB,線性度P1dB量測結果為-10 ~ -15 dBm,線性度IIP3則為-1 ~ -5 dBm,量測功耗為12.69 mW,晶片面積為0.92 × 0.84 mm^2。
第三顆電路為應用於C/X頻帶寬頻之接收機,整體接收機前端包含四個子電路:第一級為寬頻低雜訊放大器,使用第二顆的寬頻低雜訊放大器,第二級為雙共振點的寬頻巴倫,第三級為雙平衡被動混頻器,第四級則為兩級的轉阻放大器(TIA)。該架構有效提升信號隔離度與增益平坦度,並減少功耗。此電路量測最高轉換增益(Conversion Gain)為29.96 dB,3-dB頻寬從4 – 11.5 GHz,雙邊帶雜訊指數為7.3 dB,線性度P1dB量測結果為-24 ~ -26 dBm,線性度IIP3則為-11 ~ -23 dBm,量測功耗為25.35 mW,晶片面積為1.92 × 0.84 mm^2。
摘要(英) This thesis presents the design and development of three integrated circuits using the 0.18-μm CMOS process provided by Taiwan Semiconductor Manufacturing Company (tsmc?). The circuits include two wideband low-noise amplifiers (LNAs) targeting the C/X bands and a wideband receiver operating in the same frequency range.
The first chip is a wideband LNA designed using a transformer comprising gate and source degeneration inductors for input matching. This approach enhances high-frequency gain and broadens the bandwidth. A cascode structure is employed in the second stage to achieve high gain, with inductive peaking techniques used to improve gain flatness. This design optimizes power consumption, output matching, and chip area, while also flattening the gain. Measured results show a maximum gain (S21) of 13.45 dB, a 3-dB bandwidth spanning from 5.7 to 13.1 GHz, a minimum noise figure (NF) of 3.06 dB, a P1dB between -14 and -16.5 dBm, and an IIP3 ranging from -4 to -7 dBm, with a power consumption of 13.63 mW. The chip area is 1.17 × 1 mm2.
The second chip is a wideband LNA featuring a resistive feedback inverter. The first stage combines the feedback inverter with a gate-source transformer to achieve wideband input matching, while the second stage employs a cascode structure and a drain-source transformer to enhance gain flatness. The design optimizes noise matching at high frequencies, sacrificing some low-frequency performance to achieve uniform noise matching across the bandwidth. Measured results show a maximum gain (S21) of 12.01 dB, a 3-dB bandwidth from 4.5 to 12.6 GHz, a minimum noise figure (NF) of 3.59 dB, a P1dB between -10 and -15 dBm, and an IIP3 from -1 to -5 dBm, with a power consumption of 12.69 mW. The chip area is 0.92 × 0.84 mm2.
The third chip is a wideband receiver designed for the C/X band. The receiver’s front end comprises four sub-circuits: a wideband LNA (utilizing the second circuit′s design), a wideband balun with dual resonance points, a double-balanced passive mixer, and a two-stage transimpedance amplifier (TIA). This architecture enhances signal isolation, gain flatness, and reduces power consumption. Measured results show a maximum conversion gain of 29.96 dB, a 3-dB bandwidth of 4 to 11.5 GHz, a minimum double-sideband noise figure (NFdSB) of 7.3 dB, a P1dB between -24 and -26 dBm, and an IIP3 ranging from -11 to -23 dBm, with a power consumption of 25.35 mW. The chip area is 1.92 × 0.84 mm2.
關鍵字(中) ★ 低雜訊放大器 關鍵字(英) ★ LNA
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1-1 研究現況 1
1-2 研究成果 1
1-3 章節簡介 2
第二章 寬頻接收機 3
2-1 接收機簡介 3
2-2 接收機系統的重要效能指標 4
2-2-1 靈敏度(Sensitivity) 4
2-2-2 雜訊指數(Noise Figure) 5
2-2-3 動態範圍(Dynamic Range) 7
2-2-4 選擇性(Selectivity) 7
2-2-5 線性度(Linearity) 8
第三章 應用於C/X頻段之寬頻低雜訊放大器 11
3-1 研究動機 11
3-2 電路架構 11
3-3 電路設計與分析 13
3-3-1 電晶體尺寸與偏壓挑選 13
3-3-2 輸入匹配分析 16
3-3-3 電感峰值技術 23
3-3-4 輸出寬頻匹配 25
3-4 電路模擬與量測結果 29
3-5 結果與討論 37
第四章 應用於C/X頻段反向器架構之寬頻低雜訊放大器 41
4-1 研究動機 41
4-2 電路架構 41
4-3-1 輸入匹配分析 43
4-3-2 汲極與源極組成的變壓器 50
4-3-3 雜訊匹配 55
4-4 電路模擬與量測結果 57
4-5 結果與討論 65
第五章 應用於C/X頻段之低功耗寬頻接收機 68
5-1 研究動機 68
5-2 電路架構與設計 69
5-2-1 巴倫設計 70
5-2-2 混頻器設計 75
5-2-3 轉阻放大器設計 79
5-2-4 共模回授設計 81
5-2-5 輸出緩衝器設計 82
5-3 電路模擬與量測 83
5-4 結果與討論 93
第六章 結論 95
6-1 電路總結 95
6-2 未來方向 96
參考文獻 97
參考文獻 [1] B. Razavi, RF Microelectronics, 2nd Edition ed. Prentice Hall Press, 2011.
[2] K. Chang, V. Nair, and I. J. Bahl, RF and Microwave Circuit and Component Design for Wireless Systems. John Wiley & Sons, Inc., 2001.
[3] Q. Liu, Q. Lei, E. Zhao, Y. Gao, Z. Zhang, and B. Xie,“A 3~10 GHz high gain low noise amplifier with transformer feedback technique,”in 2022 2nd International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT), 1-3 July 2022, pp. 48-51.
[4] H. Gao, N. Li, M. Li, S. Wang, Z. Zhang, Y. C. Kuan, C. Song, X. Yu, Q. J. Gu, and Z. Xu,“A 6.5–12 GHz balanced variable-gain low-noise amplifier with frequency-selective gain equalization technique,”IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 732-744, 2021.
[5] N. Li, W. Feng, and X. Li,“A CMOS 3–12 GHz ultrawideband low noise amplifier by dual-resonance network,”IEEE Microwave and Wireless Components Letters, vol. 27, no. 4, pp. 383-385, 2017.
[6] T. S. Yang, P. Y. Hsu, and L. H. Lu,“A Ku-Band +2 dBm IIP3 transformer-based LNA with loop-gain-enhanced capacitive negative feedback,”in 2024 IEEE/MTT-S International Microwave Symposium - IMS 2024, 16-21 June 2024 , pp. 341-344.
[7] H. Chen, H. Zhu, L. Wu, W. Che, and Q. Xue,“A wideband CMOS LNA using transformer-based input matching and pole-tuning technique,”IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 7, pp. 3335-3347, 2021.
[8] E. Kobal, T. Siriburanon, R. B. Staszewski, and A. Zhu,“A compact, low-power, low-nf, millimeter-wave cascode LNA with magnetic coupling feedback in 22 nm FD-SOI CMOS for 5G applications,”IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 4, pp. 1331-1335, 2023.
[9] T. O. Dickson, K. H. K. Yau, T. Chalvatzis, A. M. Mangan, E. Laskin, R. Beerkens, P. Westergaard, M. Tazlauanu, M. T. Yang, and S. P. Voinigescu,“The invariance of characteristic current densities in nanoscale MOSFETs and its impact on algorithmic design methodologies and design porting of Si(Ge) (Bi)CMOS high-speed building blocks,”IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1830-1845, 2006.
[10] J. R. Long,“Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, 2000.
[11] H. W. Choi, C. Y. Kim, and S. Choi,“A 6.7–15.3 GHz, high-performance broadband low-noise amplifier with large transistor and two-stage broadband noise matching,”IEEE Microwave and Wireless Components Letters, no. 8, pp. 949-952, 2021.
[12] Z. Liu and D. Zhao,“A 6.9-17.0 GHz low-noise amplifier in 65 nm CMOS,” in 2023 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 27-29 Oct. 2023, pp. 57-58.
[13] B. Park, S. Choi, and S. Hong,“A low-noise amplifier with tunable interference rejection for 3.1 to 10.6 GHz UWB Systems,”IEEE Microwave and Wireless Components Letters, vol. 20, no. 1, pp. 40-42, 2010.
[14] J. Hu, K. Ma, S. Mou, and F. Meng,“A seven-octave broadband LNA MMIC using bandwidth extension techniques and improved active load,”IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp. 3150-3161, 2018.
[15] Y. Li, X. Li, Z. Huang, T. Tan, D. Chen, C. Cao, and Z. Qi,“A novel low-power notch-enhanced active filter for ultrawideband interferer rejected LNA,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 3, pp. 1684-1697, 2021.
[16] J. Li, Y. Yuan, J. Zeng, D. He, and Z. Yu,“A broadband LNA with multiple bandwidth enhancement techniques,”IEEE Microwave and Wireless Technology Letters, vol. 33, no. 5, pp. 551-554, 2023.
[17] J. Jung,“Design of a wideband CMOS low noise amplifier based on inverter structure using inductor peaking technique,” in 2019 8th Asia-Pacific Conference on Antennas and Propagation (APCAP), 4-7 Aug. 2019, pp. 280-283.
[18] G. Feng, C. C. Boon, F. Meng, X. Yi, K. Yang, C. Li, and H. C. Luong,“Pole-Converging intrastage bandwidth extension technique for wideband amplifiers,” IEEE Journal of Solid-State Circuits, vol. 52, no. 3, pp. 769-780, 2017.
[19] H. Chen, H. Zhu, L. Wu, Q. Xue, and W. Che,“A 7.2–27.3 GHz CMOS LNA with 3.51 ±0.21 dB noise figure using multistage noise matching technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 1, pp. 74-84, 2022.
[20] E. Zailer, L. Belostotski, and R. Plume,“Wideband LNA noise matching,” IEEE Solid-State Circuits Letters, vol. 3, pp. 62-65, 2020.
[21] B. Mesgari, S. Saeedi, and A. Jannesari,“Cell weighting and gate inductive peaking techniques for wideband noise suppression in distributed amplifiers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4507-4520, 2020.
[22] Y. S. Lin, C. C. Wang, G. L. Lee, and C. C. Chen,“High-Performance wideband low-noise amplifier using enhanced π-match input network,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 3, pp. 200-202, 2014.
[23] C. H. Li, C. N. Kuo, and M. C. Kuo,“A 1.2 V 5.2 mW 20–30 GHz wideband receiver front-end in 0.18 μm CMOS,”IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, 2012.
[24] H. Wu, N. Y. Wang, Y. Du, and M. C. F. Chang,“A blocker-tolerant current mode 60 GHz receiver with 7.5 GHz bandwidth and 3.8 dB minimum NF in 65 nm CMOS,”IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 3, pp. 1053-1062, 2015.
[25] K. Kwon, J. Han, and I. Nam,“A wideband receiver front-end employing new fine RF gain control driven by frequency-translated impedance property,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 4, pp. 247-249, 2015.
[26] A. N. Bhat, R. A. R. v. d. Zee, and B. Nauta,“A baseband-matching-resistor noise-canceling receiver with a three-stage inverter-only opamp for high in-band IIP3 and wide if applications,”IEEE Journal of Solid-State Circuits, vol. 56, no. 7, pp. 1994-2006, 2021.
[27] J. Jiang, J. Kim, A. I. Karsilayan, and J. Silva-Martinez,“A 3–6 GHz highly linear I-channel receiver with over +3.0 dBm in-band P1dB and 200 MHz baseband bandwidth suitable for 5G wireless and cognitive radio applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 8, pp. 3134-3147, 2019.
[28] J. Kim and J. Silva-Martinez,“Low-power, low-cost CMOS direct-conversion receiver front-end for multistandard applications,”IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2090-2103, 2013.
[29] 陳品豪,“低功耗I/Q寬頻接收機前端電路應用於C/X頻帶,”碩士, 電機工程學系, 國立中央大學, 桃園縣, 2017.
[30] 徐冠忠, “應用於C/X頻段之互補式金氧半導體低功耗寬頻接收機前端電路暨X頻段氮化鎵發射機之研製,”碩士, 電機工程學系, 國立中央大學, 桃園縣, 2018.
[31] 陳昶亨,“C/X頻段低功耗寬頻接收機前端暨氮化鎵X頻段升頻式混頻器之研製,”碩士, 電機工程學系, 國立中央大學, 桃園縣, 2019.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2024-11-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明