參考文獻 |
[1] B. Razavi, RF Microelectronics, 2nd Edition ed. Prentice Hall Press, 2011.
[2] K. Chang, V. Nair, and I. J. Bahl, RF and Microwave Circuit and Component Design for Wireless Systems. John Wiley & Sons, Inc., 2001.
[3] Q. Liu, Q. Lei, E. Zhao, Y. Gao, Z. Zhang, and B. Xie,“A 3~10 GHz high gain low noise amplifier with transformer feedback technique,”in 2022 2nd International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT), 1-3 July 2022, pp. 48-51.
[4] H. Gao, N. Li, M. Li, S. Wang, Z. Zhang, Y. C. Kuan, C. Song, X. Yu, Q. J. Gu, and Z. Xu,“A 6.5–12 GHz balanced variable-gain low-noise amplifier with frequency-selective gain equalization technique,”IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 732-744, 2021.
[5] N. Li, W. Feng, and X. Li,“A CMOS 3–12 GHz ultrawideband low noise amplifier by dual-resonance network,”IEEE Microwave and Wireless Components Letters, vol. 27, no. 4, pp. 383-385, 2017.
[6] T. S. Yang, P. Y. Hsu, and L. H. Lu,“A Ku-Band +2 dBm IIP3 transformer-based LNA with loop-gain-enhanced capacitive negative feedback,”in 2024 IEEE/MTT-S International Microwave Symposium - IMS 2024, 16-21 June 2024 , pp. 341-344.
[7] H. Chen, H. Zhu, L. Wu, W. Che, and Q. Xue,“A wideband CMOS LNA using transformer-based input matching and pole-tuning technique,”IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 7, pp. 3335-3347, 2021.
[8] E. Kobal, T. Siriburanon, R. B. Staszewski, and A. Zhu,“A compact, low-power, low-nf, millimeter-wave cascode LNA with magnetic coupling feedback in 22 nm FD-SOI CMOS for 5G applications,”IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 4, pp. 1331-1335, 2023.
[9] T. O. Dickson, K. H. K. Yau, T. Chalvatzis, A. M. Mangan, E. Laskin, R. Beerkens, P. Westergaard, M. Tazlauanu, M. T. Yang, and S. P. Voinigescu,“The invariance of characteristic current densities in nanoscale MOSFETs and its impact on algorithmic design methodologies and design porting of Si(Ge) (Bi)CMOS high-speed building blocks,”IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1830-1845, 2006.
[10] J. R. Long,“Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, 2000.
[11] H. W. Choi, C. Y. Kim, and S. Choi,“A 6.7–15.3 GHz, high-performance broadband low-noise amplifier with large transistor and two-stage broadband noise matching,”IEEE Microwave and Wireless Components Letters, no. 8, pp. 949-952, 2021.
[12] Z. Liu and D. Zhao,“A 6.9-17.0 GHz low-noise amplifier in 65 nm CMOS,” in 2023 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 27-29 Oct. 2023, pp. 57-58.
[13] B. Park, S. Choi, and S. Hong,“A low-noise amplifier with tunable interference rejection for 3.1 to 10.6 GHz UWB Systems,”IEEE Microwave and Wireless Components Letters, vol. 20, no. 1, pp. 40-42, 2010.
[14] J. Hu, K. Ma, S. Mou, and F. Meng,“A seven-octave broadband LNA MMIC using bandwidth extension techniques and improved active load,”IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp. 3150-3161, 2018.
[15] Y. Li, X. Li, Z. Huang, T. Tan, D. Chen, C. Cao, and Z. Qi,“A novel low-power notch-enhanced active filter for ultrawideband interferer rejected LNA,” IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 3, pp. 1684-1697, 2021.
[16] J. Li, Y. Yuan, J. Zeng, D. He, and Z. Yu,“A broadband LNA with multiple bandwidth enhancement techniques,”IEEE Microwave and Wireless Technology Letters, vol. 33, no. 5, pp. 551-554, 2023.
[17] J. Jung,“Design of a wideband CMOS low noise amplifier based on inverter structure using inductor peaking technique,” in 2019 8th Asia-Pacific Conference on Antennas and Propagation (APCAP), 4-7 Aug. 2019, pp. 280-283.
[18] G. Feng, C. C. Boon, F. Meng, X. Yi, K. Yang, C. Li, and H. C. Luong,“Pole-Converging intrastage bandwidth extension technique for wideband amplifiers,” IEEE Journal of Solid-State Circuits, vol. 52, no. 3, pp. 769-780, 2017.
[19] H. Chen, H. Zhu, L. Wu, Q. Xue, and W. Che,“A 7.2–27.3 GHz CMOS LNA with 3.51 ±0.21 dB noise figure using multistage noise matching technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 1, pp. 74-84, 2022.
[20] E. Zailer, L. Belostotski, and R. Plume,“Wideband LNA noise matching,” IEEE Solid-State Circuits Letters, vol. 3, pp. 62-65, 2020.
[21] B. Mesgari, S. Saeedi, and A. Jannesari,“Cell weighting and gate inductive peaking techniques for wideband noise suppression in distributed amplifiers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4507-4520, 2020.
[22] Y. S. Lin, C. C. Wang, G. L. Lee, and C. C. Chen,“High-Performance wideband low-noise amplifier using enhanced π-match input network,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 3, pp. 200-202, 2014.
[23] C. H. Li, C. N. Kuo, and M. C. Kuo,“A 1.2 V 5.2 mW 20–30 GHz wideband receiver front-end in 0.18 μm CMOS,”IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, 2012.
[24] H. Wu, N. Y. Wang, Y. Du, and M. C. F. Chang,“A blocker-tolerant current mode 60 GHz receiver with 7.5 GHz bandwidth and 3.8 dB minimum NF in 65 nm CMOS,”IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 3, pp. 1053-1062, 2015.
[25] K. Kwon, J. Han, and I. Nam,“A wideband receiver front-end employing new fine RF gain control driven by frequency-translated impedance property,” IEEE Microwave and Wireless Components Letters, vol. 25, no. 4, pp. 247-249, 2015.
[26] A. N. Bhat, R. A. R. v. d. Zee, and B. Nauta,“A baseband-matching-resistor noise-canceling receiver with a three-stage inverter-only opamp for high in-band IIP3 and wide if applications,”IEEE Journal of Solid-State Circuits, vol. 56, no. 7, pp. 1994-2006, 2021.
[27] J. Jiang, J. Kim, A. I. Karsilayan, and J. Silva-Martinez,“A 3–6 GHz highly linear I-channel receiver with over +3.0 dBm in-band P1dB and 200 MHz baseband bandwidth suitable for 5G wireless and cognitive radio applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 8, pp. 3134-3147, 2019.
[28] J. Kim and J. Silva-Martinez,“Low-power, low-cost CMOS direct-conversion receiver front-end for multistandard applications,”IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2090-2103, 2013.
[29] 陳品豪,“低功耗I/Q寬頻接收機前端電路應用於C/X頻帶,”碩士, 電機工程學系, 國立中央大學, 桃園縣, 2017.
[30] 徐冠忠, “應用於C/X頻段之互補式金氧半導體低功耗寬頻接收機前端電路暨X頻段氮化鎵發射機之研製,”碩士, 電機工程學系, 國立中央大學, 桃園縣, 2018.
[31] 陳昶亨,“C/X頻段低功耗寬頻接收機前端暨氮化鎵X頻段升頻式混頻器之研製,”碩士, 電機工程學系, 國立中央大學, 桃園縣, 2019. |