博碩士論文 111521116 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:18.191.132.105
姓名 張威銍(Wei-Chih Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微型化雙頻平衡式微波被動電路設計
(Miniaturized Dual-Band Balanced Microwave Passive Circuit Design)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-12-3以後開放)
摘要(中) 本論文以微型化雙頻平衡式微波被動電路為研究目標,提出雙頻平衡式帶通濾波器以及功率分配器之設計,設計上使用雙頻橋式T線圈(Bridged-T Coil, BTC)取代傳輸線,同時達到電路尺寸微型化與雙頻操作的效果。
首先,以WIPD製程實現18.7/38.5-GHz雙頻平衡式帶通濾波器,成功實現雙頻操作且具共模雜訊吸收效果,其電路面積為2.23 mm × 2.06 mm,在兩中心頻率之電氣尺寸分別為0.140 × 0.130與0.30 × 0.270。接著,分別以WIPD製程與TSMC 90-nm CMOS製程實現雙頻平衡式功率分配器,以WIPD製程實現之18.7/38.5-GHz雙頻平衡式功率分配器,其電路面積為2.38 mm × 1.9 mm,在兩中心頻率之電氣尺寸分別為0.150 × 0.120與0.30 × 0.240。而以TSMC 90-nm CMOS製程實現之10.7/20-GHz雙頻平衡式功率分配器,其電路面積為1.14 mm × 1.25 mm,在兩中心頻率之電氣尺寸分別為0.040 × 0.0440與0.080 × 0.0840。
上述電路實測效能良好,相較於既有之相關設計,均成功達成大幅縮減電路面積之目的。
摘要(英) This thesis focuses on the design of miniaturized dual-band balanced microwave passive circuits, and the design of a dual-band balanced bandpass filter and a dual-band balanced power divider are proposed. By using the dual-band design of bridged-T coils, both circuit miniaturization and dual-band operation are achieved simultaneously.
First, the proposed 18.7/38.5-GHz dual-band balanced band-pass filter is implemented using the WIPD process. The proposed design successfully achieves the desired dual-band frequency characteristic along with the absorption of common-mode noise. The circuit size is only 2.23 mm × 2.06 mm, while the corresponding electrical sizes are 0.14λ? × 0.13λ? at 18.7 GHz and 0.3λ? × 0.27λ? at 38.5 GHz. Next, two dual-band balanced power dividers are implemented using the WIPD and TSMC 90-nm CMOS processes. The proposed 18.7/38.5-GHz dual-band balanced power divider in WIPD features a circuit size of 2.38 mm × 1.9 mm. The corresponding electrical sizes are 0.15λ? × 0.12λ? at 18.7 GHz and 0.3λ? × 0.24λ? at 38.5 GHz. The proposed 10.7/20-GHz dual-band balanced power divider implemented with the TSMC 90-nm CMOS process features a very compact circuit size of only 1.14 mm × 1.25 mm. The corresponding electrical sizes are 0.04λ? × 0.044λ? at 10.7 GHz and 0.08λ? × 0.084λ? at 20 GHz.
The measured performance of these circuits is good. Compared to existing designs, they successfully achieve significant circuit size reduction.
關鍵字(中) ★ 雙頻
★ 微型化
★ 平衡式
★ 毫米波
★ 帶通濾波器
★ 功率分配器
關鍵字(英) ★ Dual-band
★ Miniaturized
★ balanced
★ Millimeter-wave
★ Bandpass Filter
★ Power divider
論文目次 論文摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 章節介紹 7
第二章 設計原理 8
2.1 單訊號電路與差模訊號電路 8
2.2 混合模態與散射參數 9
2.2.1雙埠平衡式網路分析 9
2.2.2三埠平衡式網路分析 12
2.3 雙頻橋式T線圈 16
第三章 具有共模雜訊吸收之雙頻平衡式帶通濾波器 20
3.1 電路架構與原理 20
3.2 電路實作 27
3.2.1 WIPD製程 27
3.2.2 雙頻橋式T線圈佈局設計 28
3.2.3 濾波器電路實作與量測 34
3.3 結果與討論 41
第四章 微型化雙頻平衡式功率分配器 44
4.1電路架構與原理 44
4.2電路實作Ⅰ_WIPD製程 55
4.2.1 理想電路模擬 55
4.2.2 雙頻橋式T線圈佈局設計 60
4.2.3 功率分配器電路實作與量測 66
4.3電路實作Ⅱ_90-nm CMOS製程 80
4.3.1 TSMC 90-nm CMOS製程 80
4.3.2 理想電路模擬 81
4.3.3 雙頻橋式T線圈佈局設計 87
4.3.4功率分配器電路實作與量測 93
4.4 結果與討論 106
第五章 結論與未來展望 111
參考文獻 113
參考文獻 [1] W. Zhang, Y. Wu, Y. Liu, C. Yu, A. Hasan and F. M. Ghannouchi, “Planar wideband differential-mode bandpass filter with common-mode noise absorption,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 5, pp. 458-460, May 2017.
[2] T. B. Lim and L. Zhu, “A differential-mode wideband bandpass filter on microstrip line for UWB application,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 632-634, Oct. 2009.
[3] X.-H. Wu and Q.-X. Chu, “Compact differential ultra-wideband bandpass filter with common-mode suppression,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 9, pp. 456-458, Sep. 2012.
[4] C.-H. Wu, C.-H. Wang and C. H. Chen, “Stopband-extended balanced bandpass filter using coupled stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 507-509, Jul. 2007.
[5] J. Shi and Q. Xue, “Balanced bandpass filters using center-loaded half-wavelength resonators,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 970-977, Apr. 2010.
[6] Y.-J. Huang and Y.-H. Pang, “Balanced-to-balanced rat-race coupler with bandpass response,” Proc. Int. Symp. Antennas Propag. (ISAP), pp. 902-903, Oct. 2016.
[7] F. Wei, L. Y. Qiao, Y. Han, X.-B. Zhao, L. Xu, R. Li, et al., “A balanced filtering directional coupler based on slotline using asymmetric parallel loaded branches,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 12, no. 7, pp. 1222-1231, Jul. 2022.
[8] B. Xia, L. S. Wu and J. Mao, “A new balanced-to-balanced power divider/combiner,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 9, pp. 2791-2798, Sep. 2012.
[9] W. Feng, C. Zhao, W. Che and Q. Xue, “A balanced-to-balanced network with unequal power division and wideband common mode suppression,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 4, pp. 237-239, Apr. 2016.
[10] F. Wei, X. B. Zhao, X. Y. Wang, B. Li and X. W. Shi, “Balanced UWB power divider with one narrow notch-band,” Electron. Lett., vol. 53, pp. 1524-1526, Nov. 2017.
[11] R. Ma and Z. Zhang, “A Case Study of Starlink and 5G in Future Space based Internet Services,” in 2022 4th International Symposium on Smart and Healthy Cities (ISHC), 2022, pp. 64–67.
[12] Y.-S. Lin and J.-H. Lee, “Miniature Butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz applications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2594-2602, Jul. 2013.
[13] W.-T. Fang, E.-W. Chang and Y.-S. Lin, “Bridged-T coil for miniature dual-band branch-line coupler and power divider designs,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 2, pp. 889-901, Feb. 2018.
[14] Y. -S. Lin, P. -S. Lu and C. -Y. Lu, “Miniature V-band rat-race coupler in CMOS using cascaded Bridged-T coils,” IEEE Trans. Microw. Theory Techn., vol. 71, no. 2, pp. 737-749, Feb. 2023.
[15] Y.-S. Lin, J.-H. Zhuang, Y.-C. Wu and T.-H. Cheng, “Design and application of novel single-and dual-band reconfigurable microwave components with filter and coupler functions,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 6, pp. 3163-3176, Jun. 2022.
[16] Y.-S. Lin, Y.-C. Huang and Q.-Y. Jiang, “Miniature dual-band absorptive bandstop filters with improved passband performance,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 69, no. 6, pp. 2339-2350, Jun. 2022.
[17] Y.-S. Lin, Y.-R. Liu and C.-H. Chan, “Novel miniature dual-band rat-race coupler with arbitrary power division ratios using differential bridged-T coils,” IEEE Trans. Microw. Theory Techn., vol. 69, no. 1, pp. 590-602, Jan. 2021.
[18] Y.-S. Lin and C.-Y. Lin, “Miniature dual-band quadrature coupler with arbitrary power division ratios over the two bands,” IEEE Trans. Circuits Syst. I Reg. Papers., vol. 67, no. 2, pp. 634-646, Feb. 2020.
[19] E.-W. Chang and Y.-S. Lin, “Miniature multi-band absorptive bandstop filter designs using bridged-T coils,” IEEE Access, vol. 6, pp. 73637-73646, 2018.
[20] J.-X. Chen, M.-Z. Du, Y.-L. Li, Y.-J. Yang and J. Shi, “Independently tunable/controllable differential dual-band bandpass filters using element-loaded stepped-impedance resonators,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 8, no. 1, pp. 113-120, Jan. 2018.
[21] Z. Tan, Q.-Y. Lu and J.-X. Chen, “Differential dual-band filter using ground bar-loaded dielectric strip resonators,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 2, pp. 148-151, Feb. 2020.
[22] G. Dong, W. Wang, Y. Wu, W. Li, Y. Liu and M. M. Tentzeris, “Dual-band balanced bandpass filter using slotlines loaded patch resonators with independently controllable bandwidths,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 7, pp. 653-656, Jul. 2020.
[23] X.-B. Zhao, F. Wei, L. Yang and R. Gomez-Garcia, “Two-layer-magic-T-based bandpass quasi-bandstop and dual-passband balanced filters with differential-/common-mode reflectionless behavior,” IEEE Trans. Microw. Theory Techn., vol. 72, no. 4, pp. 2267-2282, Apr. 2024.
[24] F. Wei et al., “Balanced dual-band BPF and FPD using quad-mode RLR with improved selectivity,” IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 69, no. 4, pp. 2081-2085, Apr. 2022.
[25] X. Liu, B. Ren, X. Guan, J. Wang and S. Wan, “High selectivity dual-band balanced BPF with controllable passbands based on magnetically coupled capacitor-loaded SIRs,” IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 70, no. 9, pp. 3293-3297, Sep. 2023.
[26] Y.-K. Han, H.-W. Deng, J.-M. Zhu, S.-B. Xing and W. Han, “Compact dual-band dual-mode SIW balanced BPF with intrinsic common-mode suppression,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 2, pp. 101-104, Feb. 2021.
[27] Y. Song, H. Liu, L. Feng and H. Xu, “Balanced dual-band HTS BPF with controllable frequency ratio and transmission zeros using mixed cross-coupling,” IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 69, no. 11, pp. 4313-4317, Nov. 2022.
[28] B. Ren, X. Liu, X. Guan and H. Liu, “High-order HTS dual-band differential bandpass filter using stub-loaded twin-ring resonator with fully controllable passbands,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 71, no. 4, pp. 1572-1581, April 2024.
[29] B. Ren, W. Yuan, X. Guan, X. Liu, X. Zhang and H. Liu, “High-order superconducting dual-band differential bandpass filter using symmetrical composite right-/left-handed resonator with wide stopband,” IEEE Microw. Wireless Technol. Lett., vol. 34, no. 8, pp. 979-982, Aug. 2024.
[30] B. Ren et al., “Differential dual-band superconducting bandpass filter using multimode square ring loaded resonators with controllable bandwidths,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 2, pp. 726-737, Feb. 2019.
[31] J. Tang, H. Liu and Y. Yang, “Balanced dual-band superconducting filter using stepped-impedance resonators with high band-to-band isolation and wide stopband,” IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 68, no. 1, pp. 131-135, Jan. 2021.
[32] Y. Song, H. Liu, L. Feng, C. Guo, S. Zheng and Z. Ma, “High-order balanced dual-band HTS BPF with flexible frequency ratio and sharp rejection skirts,” IEEE Trans. Microw. Theory Techn., vol. 70, no. 4, pp. 2185-2195, Apr. 2022.
[33] L. Chen, F. Wei, X. Y. Cheng and Q. K. Xiao, “A dual-band balanced-to-balanced power divider with high selectivity and wide stopband,” IEEE Access, vol. 7, pp. 40114-40119, 2019.
[34] G. Zhang, Q. Zhang, Q. Liu, W. Tang and J. Yang, “Design of a new dual-band balanced-to-balanced filtering power divider based on the circular microstrip patch resonator,” IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 68, no. 12, pp. 3542-3546, Dec. 2021.
[35] X. -B. Zhao, F. Wei, P. F. Zhang and X. W. Shi, “Mixed-mode magic-Ts and their applications on the designs of dual-band balanced out-of-phase filtering power dividers,” IEEE Trans. Microw. Theory Techn, vol. 71, no. 9, pp. 3896-3905, Sept. 2023.
[36] P.-L. Chi, Y.-M. Chen and T. Yang, “Single-layer dual-band balanced substrate-integrated waveguide filtering power divider for 5G millimeter-wave applications,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 6, pp. 585-588, Jun. 2020.
[37] F. Martin and F. Medina, “Balanced microwave transmission lines circuits and sensors,” IEEE J. Microw., vol. 3, no. 1, pp. 398-440, Jan. 2023.
[38] D. E. Bockelman and W. R. Eisenstadt, “Combined differential and common-mode scattering parameters: Theory and simulation,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 7, pp. 1530-1539, Jul. 1995.
[39] Y.-S. Lin and C.-H. Wei, “A novel miniature dual-band impedance matching network for frequency-dependent complex impedances,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 10, pp. 4314-4326, Oct. 2020.
[40] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, New York, NY, USA:Wiley, 2001.
指導教授 林祐生(Yo-Shen Lin) 審核日期 2024-12-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明