博碩士論文 111522048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.135.188.108
姓名 李敬華(Jing-Hua Lee)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於雷射指向精度的 ISL 品質估計繞送法
(Laser Pointing Accuracy Based ISL Quality Estimation Algorithm)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ SeFence: 基於安全感測的可信任周邊存取控制
★ 高解析度二維地理影像的三維建模:旋轉變換投影與傳統方法的比較研究★ 在低軌道衛星無線通訊中的CSI預測方法
★ 為多流量低軌道衛星系統提出的動態換手策略★ 基於Trustzone的智慧型設備語音隱私保護系統
★ 一種減輕LEO衛星網路干擾的方案★ TruzGPS:基於TrustZone的位置隱私權保護系統
★ 衛星地面整合網路之隨機接入前導訊號設計與偵測★ SatPolicy: 基於Trustzone的衛星政策執行系統
★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統★ 衛星地面網路中基於物理層安全的CSI保護方法
★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸★ 低軌道衛星地面網路中的DRX機制設計
★ 衛星地面整合網路之基於集合系統的前導訊號設計★ 基於省電的低軌衛星網路路由演算法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近期衛星網路快速發展,低地球軌道衛星網路營運商開始建立衛星間通訊,以克服 LEO 衛星服務範圍小的問題。最新的衛星間通訊科技:雷射通訊,是衛星間通訊的首選。比起傳統的微波通訊,雷射通訊可以提供更具優勢的傳輸效能。然而雷射通訊需要準確的天線指向精度,才可以維持雷射的傳輸優勢。衛星受太空環境影響,常會發生不可預測的衛星間鏈路故障,這使衛星網路拓撲頻繁的變化。故障的衛星間鏈路與指向精確度低的衛星間鏈路會嚴重降低衛星網路的性能。通過衛星間的對位置,本文分析了衛星間的雷射天線指向精度對
傳輸造成的影響,並提出了基於雷射指向精度的衛星間鏈路品質估計繞送法。最終實驗結果表明,我們的方法能使衛星網路傳輸延遲降低,且有較高的封包傳輸率。鏈路使用率不平均是我們的方法稍有不足之處。
摘要(英) Recently, satellite networks have rapidly developed, and low Earth orbit (LEO) satellite network operators have begun establishing inter-satellite link (ISL) to overcome the service coverage limit of the entire network. ISL allows satellite network operators to expand their service coverage without the need to construct additional ground stations. Advanced ISL technology, laser communication, is the preferred choice for LEO satellite network operators. Compared to traditional microwave communication, laser communication offers superior transmission performance. However, laser communication requires precise antenna pointing accuracy to maintain its transmission advantages. Satellites are affected by the space environment, leading to unpredictable ISL failures, which cause frequent changes in satellite network topology. Fail ISL and ISL with low pointing accuracy can severely decrease the performance of satellite networks. Through satellite-to-satellite positioning, this paper analyzes the impact of laser antenna pointing accuracy on ISL transmission, and we propose Laser Pointing Accuracy Based ISL Quality Estimation Algorithm. The final experimental results indicate that our method can reduce transmission latency in satellite networks and achieve a higher packet delivery rate. Uneven link utilization is a slight disadvantage of our method.
關鍵字(中) ★ 衛星星座網路
★ 低軌衛星
★ 軌道
★ 路由
★ 鏈路失效
★ 指向精度
★ 雷射通訊
關鍵字(英) ★ Satellite network
★ Low earth orbit satellites
★ Orbits
★ Routing
★ Link failure
★ Pointing accuracy
★ Laser communication
論文目次 中文摘要i
Abstract ii
致謝iii
Contents iv
List of Figures vi
List of Tables viii
1 Introduction 1
2 Related Work 5
2.1 Central Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Distribute Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Hybrid Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 System Model 11
3.1 Satellite Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Pointing Errors on Signal Intensity Losses . . . . . . . . . . . . . . . . . 14
3.3 Type of Pointing Error . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Methodology 17
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Two-Line Element Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Simplified Perturbations Models . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Along-track Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Elevation of Pointing Offset . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Azimuth of Pointing Offset . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 Elevation and Azimuth of Along-track Error . . . . . . . . . . . . . . . . 25
4.8 Compensation time for pointing error . . . . . . . . . . . . . . . . . . . 28
4.9 Routing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5 Performance Evaluation 33
6 Conclusion 38
Bibliography 39
參考文獻 [1] “Strategic center for networking, integration, and communications orbit propagation front-end software development,” 2024, https://ntrs.nasa.gov/api/citations/20180008672/downloads/20180008672.pdf.
[2] W. Feng, Y. Siyuan, M. Zhongtian, M. Jing, and T. Liying, “Correction of pointing angle deviation and in-orbit validation in satellite-ground laser communication links,” Chinese Journal of Lasers, vol. 41, no. 6, 2014.
[3] G. Aiyan, G. Wenjun, Z. Aosong, C. Jingshuang, and H. Shanbao, “Beaconless acquisition tracking and pointing of inter-satellite optical communication,” Infrared and Laser Engineering, vol. 46, no. 10, 2017.
[4] Z. Luo, T. Pan, E. Song, H. Wang, W. Xue, T. Huang, and Y. Liu, “A refined dijkstra’s algorithm with stable route generation for topology-varying satellite networks,” International Conference on Distributed Computing Systems, 2021.
[5] Y. Lee, J. Kwak, and J. P. Choi, “Impact of optical isl on satellite routing path discovery in leo satellite mega-constellation,” 2021 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1666–1671, 2021.
[6] Z. Zhao, Q. Wu, H. Li, Z. Lai, and J. Liu, “Lrar: A lightweight risk-avoidance routing algorithm for leo satellite networks,” 2021 International Wireless Communications and Mobile Computing (IWCMC), pp. 223–228, 2021.
[7] T. Shake, J. Sun, T. Royster, and A. Narula-Tam, “Contingent routing using orbital geometry in proliferated low-earth-orbit satellite networks,” MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM), pp. 404–411, 2022.
[8] M. M. H. Roth, H. Brandt, and H. Bischl, “Distributed sdn-based load-balanced routing for low earth orbit satellite constellation networks,” 2022 11th Advanced Satellite Multimedia Systems Conference and the 17th Signal Processing for Space Communications Workshop (ASMS/SPSC), pp. 1–8, 2022.
[9] “Gaussian beam propagation,” 2024, https://www.edmundoptics.com/knowledgecenter/application-notes/lasers/gaussian-beam-propagation/.
[10] W. Kammerer, P. Grenfell, L. Hyest, P. Serra, H. Tomio, N. Belsten, C. Lindsay, O. Cierny, K. Cahoy, M. Clark, D. Coogan, J. Conklin, D. Mayer, J. Stupl, and J. Hanson, “Click mission flight terminal optomechanical integration and testing,” 2022 International Conference on Space Optics (ICSO), 2022.
[11] “About the two-line element set format,” 2024, https://celestrak.org/columns/v04n05/index.php#FAQ08.
[12] “Satellite laser ranging,” 2024, https://ilrs.gsfc.nasa.gov/technology/laserRanging/index.html.
[13] D. A. Vallado and P. Crawford, “Sgp4 orbit determinationpdf,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 2008.
[14] K. Riesing and K. Cahoy, “Propagation of cubesats in leo using norad two line element sets: Accuracy and update frequency,” AIAA Guidance, Navigation, and Control (GNC) Conference, 2013.
[15] A. Carrillo-Flores, D. Giggenbach, M. Knopp, D. Orsucci, and A. Shrestha, “Effects of pointing errors on intensity losses in the optical leo uplink,” International Conference on Space Optics, 2022.
[16] D. Racelis and M. Joerger, “High-integrity tle error models for meo and geo satellites,” AIAA SPACE and Astronautics Forum and Exposition, 2018.
[17] “Ansys systems tool kit (stk),” 2024, https://www.ansys.com/products/missions/ansys-stk.
[18] “Horizontal coordinate system,” 2024, https://en.wikipedia.org/wiki/Horizontal_coordinate_system.
[19] “Haversine formula,” 2024, https://en.wikipedia.org/wiki/Haversine_formula.
[20] Y. Li, H. Li, W. Liu, L. Liu, W. Zhao, Y. Chen, J. Wu, Q. Wu, J. Liu, Z. Lai, and H. Qiu, “A networking perspective on starlink’s self-driving leo mega-constellation,” Association for Computing Machinery, p. 16, 2023.
[21] L. Felicetti, M. Basuiau, E. Belshi, N. Diener, O. Kutyla, C. Laing, L. Noyon, R. Owen, S. Patayane, J. Penney, A. Rapicault, S. Rowling, S. Shaikh, F. Sherry, and A. Weber, “Design of a debris removal and on-orbit maintenance mission for mega-constellations,” 2023 IEEE Aerospace Conference, pp. 1–11, 2023.
[22] S. Low and C. Xian, “Assessment of orbit maintenance strategies for small satellites,” 2023 IEEE Aerospace Conference, pp. 1–11, 08 2018.
[23] “Celestrak since 1985,” 2024, https://celestrak.org/.
[24] “Omnet++ discrete event simulator,” 2024, https://omnetpp.org/.
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明