博碩士論文 111522049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:18.216.130.48
姓名 高士唐(Shi-Tang Kao)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於質譜儀資料使用深度學習方法預測不同地區之耐甲氧西林金黃色葡萄球菌之抗藥性
相關論文
★ 空氣汙染物與疾病關聯性之研究與利用深度學習預測疾病★ 利用質譜儀資料快速檢測金黃色葡萄球菌之抗藥性
★ 根據質譜儀資料辨識大腸桿菌抗藥性之特徵峰值★ 蛋白質賴氨酸丙二酰化修飾作用位點之預測系統
★ 基於機器學習方法的抗微生物肽活性預測 及特徵分析★ 用於預測抗菌肽多種功能類別的多標籤分類器
★ 利用機器學習預測濁水溪沖積扇區域之地下水砷汙染★ EnHemo:融合蛋白質語言模型的集成框架用於識別高活性抗菌肽的溶血毒性
★ 整合磷酸蛋白質組數據與深度學習的激酶活性圖譜預測與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 耐甲氧西林金黃色葡萄球菌(Methicillin-Resistant Staphylococcus aureus,MRSA)於1961年在英國首次被識別,是一種對多種抗生素具有抗藥性的細菌,並且有著極高的死亡率和發病率,因此也被稱為“超級細菌”。基質輔助雷射脫附電離飛行時間質譜法(MALDI-TOF MS)提供了一種更快速的微生物鑑定替代方法,當與機器學習結合使用時,能顯著提高微生物鑑定的準確性和效率。不同地理區域的MRSA菌株展示出特定的亞型分布,先前研究多集中於單一地區的MRSA抗藥性預測,而忽略了地理差異對於抗藥性模式的影響,導致模型性能會因為MRSA資料集來源的差異性而有所下降。為了解決這一問題,在本研究中我們使用超過25,000個來自台灣和瑞士的數據樣本,採用深度學習方法並結合聯邦式學習和遷移式學習,對模型進行了跨地區訓練以提升模型的適應性和準確性。結果顯示在獨立測試集的AUROC和AUPRC分別達到了0.82以及0.7以上。我們還通過shapley值和差異表達分析鑑定了幾個與MRSA特有峰值相關的關鍵特徵,比如2410至2419範圍內的2415點代表PSM-mec、6590至6599範圍內的6593點代表SA1452蛋白並進行了台灣和瑞士抗藥性與敏感性樣本之間的比較。最後以宏觀的角度探討了全球MRSA亞型的分布和盛行率,發現與我們的結果相關聯,如台灣的ST59-V和ST239-III,以及瑞士或歐洲的ST22-IV。這些成果不僅豐富了我們對MRSA全球分布的了解,也強調了利用地區化數據提升抗藥性預測準確性的重要性。
摘要(英) Methicillin-Resistant Staphylococcus aureus (MRSA) was first identified in the UK in 1961. It is a type of bacteria resistant to multiple antibiotics and has a very high mortality and morbidity rate, earning it the label of a “superbug.” Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) provides a faster alternative for microbial identification. When combined with machine learning, it significantly enhances the accuracy and efficiency of microbial identification. MRSA strains from different geographic regions exhibit specific sequence types distribution. Previous studies have primarily focused on predicting MRSA resistance within a single region, neglecting the impact of geographic differences on resistance patterns, leading to decreased model performance due to differences in the sources of MRSA datasets. To address this issue, our study utilized over 25,000 data samples from Taiwan and Switzerland. We employed deep learning methods combined with federated learning and transfer learning to train the model across regions, improving its adaptability and accuracy. The results showed that the AUROC and AUPRC in the independent test sets reached over 0.82 and 0.7, respectively. Through shapley value and differential expression analysis, we identified several key features associated with MRSA specific peaks, such as the 2415 peak in the 2410-2419 range representing PSM-mec and the 6593 peak in the 6590-6599 range representing the SA1452 protein, and conducted a comparative analysis of resistance and susceptible samples from Taiwan and Switzerland. Finally, from a macroscopic perspective, we explored the global distribution and prevalence of MRSA sequence types, finding correlations with our results, such as ST59-V and ST239-III in Taiwan and ST22-IV in Switzerland or Europe. These findings not only enrich our understanding of the global distribution of MRSA but also emphasize the importance of using localized data to improve the accuracy of resistance predictions.
關鍵字(中) ★ 金黃色葡萄球菌
★ 基質輔助雷射脫附電離飛行時間質譜
★ 深度學習
★ 抗生素抗藥性
關鍵字(英) ★ Staphylococcus aureus
★ MALDI-TOF
★ Deep Learning
★ Antibiotic Resistance
論文目次 中文摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Related Works 3
1.3 Motivation 7
1.4 Goal 7
Chapter 2 Materials and Methods 8
2.1 Data Collection and Preprocessing 10
2.1.1 Data Sources 10
2.1.2 MALDI-TOF MS Data and Peak Detection 10
2.1.3 Data Cleansing 11
2.2 Feature Extraction 13
2.2.1 Peak Alignment 13
2.2.2 Binning Method 13
2.2.3 Filtering Features 14
2.2.4 Scaling and Normalizing 14
2.2.5 Data Splitting 15
2.3 Model Building 16
2.3.1 Deep Neural Network (DNN) 16
2.3.2 Federated Learning 17
2.3.3 Transfer Learning 17
2.4 Shapley Value 18
2.5 Differential Expression Analysis 18
2.6 Weighted Gene Co-expression Network Analysis (WGCNA) 18
2.7 Evaluation Metrics 19
Chapter 3 Results 20
3.1 Performances of Models 20
3.1.1 Performances of Training Individually 20
3.1.2 In Comparison with Works in The Literature 21
3.1.3 Performance of Federated Learning and Transfer Learning 22
3.2 Important Features in Different Datasets 23
3.3 Comparative Analysis of Resistant and Susceptible Samples 24
3.3.1 Peaks Between Resistant and Susceptible Samples 24
3.3.2 Observing Resistance and Susceptible Samples Through Dimension Reduction 26
3.4 Analysis of Peak Intensity 26
3.4.1 Analysis of Intensity Differences in Dataset 26
3.4.2 Clustering Peaks with Intensity Using WGCNA 28
3.5 Global MRSA Analysis 33
3.5.1 MRSA Sequence Types Distribution 33
3.5.2 MRSA World’s Trend 36
3.6 Impact of Sample Collection Time on Model Performance 38
Chapter 4 Discussions and Conclusions 40
4.1 Discussions 40
4.2 Conclusions 41
References 42
參考文獻 [1] M. P. Jevons, "“Celbenin”-resistant staphylococci," British medical journal, vol. 1, no. 5219, p. 124, 1961.
[2] S. E. Cosgrove, G. Sakoulas, E. N. Perencevich, M. J. Schwaber, A. W. Karchmer, and Y. Carmeli, "Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis," Clinical infectious diseases, vol. 36, no. 1, pp. 53-59, 2003.
[3] K. S. Gurusamy, R. Koti, C. D. Toon, P. Wilson, and B. R. Davidson, "Antibiotic therapy for the treatment of methicillin‐resistant Staphylococcus aureus (MRSA) infections in surgical wounds," Cochrane Database of Systematic Reviews, no. 8, 2013.
[4] P. Washer and H. Joffe, "The “hospital superbug”: social representations of MRSA," Social Science & Medicine, vol. 63, no. 8, pp. 2141-2152, 2006.
[5] F. D. Lowy, "Staphylococcus aureus infections," New England journal of medicine, vol. 339, no. 8, pp. 520-532, 1998.
[6] K. Hiramatsu, L. Cui, M. Kuroda, and T. Ito, "The emergence and evolution of methicillin-resistant Staphylococcus aureus," Trends in microbiology, vol. 9, no. 10, pp. 486-493, 2001.
[7] W. D. Beck, B. Berger-Bächi, and F. H. Kayser, "Additional DNA in methicillin-resistant Staphylococcus aureus and molecular cloning of mec-specific DNA," Journal of Bacteriology, vol. 165, no. 2, pp. 373-378, 1986.
[8] L. A. Dever and T. S. Dermody, "Mechanisms of bacterial resistance to antibiotics," Archives of internal medicine, vol. 151, no. 5, pp. 886-895, 1991.
[9] K. Hiramatsu, "Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance," The Lancet infectious diseases, vol. 1, no. 3, pp. 147-155, 2001.
[10] I. W. G. o. t. C. o. S. C. C. Elements, "Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements," Antimicrobial agents and chemotherapy, vol. 53, no. 12, p. 4961, 2009.
[11] M. Z. David and R. S. Daum, "Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic," Clinical microbiology reviews, vol. 23, no. 3, pp. 616-687, 2010.
[12] E. F. Kong, J. K. Johnson, and M. A. Jabra-Rizk, "Community-associated methicillin-resistant Staphylococcus aureus: an enemy amidst us," PLoS pathogens, vol. 12, no. 10, p. e1005837, 2016.
[13] M. C. Maiden et al., "Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms," Proceedings of the National Academy of Sciences, vol. 95, no. 6, pp. 3140-3145, 1998.
[14] Y.-Y. Chuang and Y.-C. Huang, "Molecular epidemiology of community-associated meticillin-resistant Staphylococcus aureus in Asia," The Lancet infectious diseases, vol. 13, no. 8, pp. 698-708, 2013.
[15] H. Grundmann et al., "Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis," PLoS medicine, vol. 7, no. 1, p. e1000215, 2010.
[16] A. D. Kennedy et al., "Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification," Proceedings of the National Academy of Sciences, vol. 105, no. 4, pp. 1327-1332, 2008.
[17] Z. A. Khan, M. F. Siddiqui, and S. Park, "Current and emerging methods of antibiotic susceptibility testing," Diagnostics, vol. 9, no. 2, p. 49, 2019.
[18] N. Singhal, M. Kumar, P. K. Kanaujia, and J. S. Virdi, "MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis," Frontiers in microbiology, vol. 6, p. 791, 2015.
[19] M. D. Song, M. Wachi, M. Doi, F. Ishino, and M. Matsuhashi, "Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion," FEBS letters, vol. 221, no. 1, pp. 167-171, 1987.
[20] K. Sogawa et al., "Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus using MALDI-TOF mass spectrometry," Biocontrol science, vol. 22, no. 3, pp. 163-169, 2017.
[21] Z. Wang, H.-Y. Wang, C.-R. Chung, J.-T. Horng, J.-J. Lu, and T.-Y. Lee, "Large-scale mass spectrometry data combined with demographics analysis rapidly predicts methicillin resistance in Staphylococcus aureus," Briefings in Bioinformatics, vol. 22, no. 4, p. bbaa293, 2021.
[22] H.-Y. Wang et al., "A large-scale investigation and identification of methicillin-resistant Staphylococcus aureus based on peaks binning of matrix-assisted laser desorption ionization-time of flight MS spectra," Briefings in Bioinformatics, vol. 22, no. 3, p. bbaa138, 2021.
[23] J. Yu et al., "Rapid identification of methicillin-resistant Staphylococcus aureus using MALDI-TOF MS and machine learning from over 20,000 clinical isolates," Microbiology Spectrum, vol. 10, no. 2, pp. e00483-22, 2022.
[24] C. Weis et al., "Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning," Nature Medicine, vol. 28, no. 1, pp. 164-174, 2022.
[25] Z. Wang et al., "A risk assessment framework for multidrug-resistant Staphylococcus aureus using machine learning and mass spectrometry technology," Briefings in Bioinformatics, vol. 24, no. 6, p. bbad330, 2023.
[26] C.-R. Chung et al., "MDRSA: a web based-tool for rapid identification of multidrug resistant Staphylococcus aureus based on matrix-assisted laser desorption ionization-time of flight mass spectrometry," Frontiers in Microbiology, vol. 12, p. 766206, 2021.
[27] J. Zhang et al., "Rapid antibiotic resistance serial prediction in staphylococcus aureus based on large-scale maldi-tof data by applying xgboost in multi-label learning," Frontiers in Microbiology, vol. 13, p. 853775, 2022.
[28] X. A. López-Cortés, J. M. Manríquez-Troncoso, R. Hernández-García, and D. Peralta, "MSDeepAMR: antimicrobial resistance prediction based on deep neural networks and transfer learning," Frontiers in Microbiology, vol. 15, p. 1361795, 2024.
[29] S. Gibb and K. Strimmer, "MALDIquant: a versatile R package for the analysis of mass spectrometry data," Bioinformatics, vol. 28, no. 17, pp. 2270-2271, 2012.
[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, vol. 25, 2012.
[31] A. B. Nassif, I. Shahin, I. Attili, M. Azzeh, and K. Shaalan, "Speech recognition using deep neural networks: A systematic review," IEEE access, vol. 7, pp. 19143-19165, 2019.
[32] D. W. Otter, J. R. Medina, and J. K. Kalita, "A survey of the usages of deep learning for natural language processing," IEEE transactions on neural networks and learning systems, vol. 32, no. 2, pp. 604-624, 2020.
[33] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-efficient learning of deep networks from decentralized data," in Artificial intelligence and statistics, 2017: PMLR, pp. 1273-1282.
[34] D. J. Beutel et al., "Flower: A friendly federated learning research framework," arXiv preprint arXiv:2007.14390, 2020.
[35] S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345-1359, 2009.
[36] S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions," Advances in neural information processing systems, vol. 30, 2017.
[37] B. Rozemberczki et al., "The shapley value in machine learning," arXiv preprint arXiv:2202.05594, 2022.
[38] J.-M. Kim, I. Kim, S. H. Chung, Y. Chung, M. Han, and J.-S. Kim, "Rapid discrimination of methicillin-resistant Staphylococcus aureus by MALDI-TOF MS," Pathogens, vol. 8, no. 4, p. 214, 2019.
[39] M. Josten et al., "Analysis of the matrix-assisted laser desorption ionization–time of flight mass spectrum of Staphylococcus aureus identifies mutations that allow differentiation of the main clonal lineages," Journal of clinical microbiology, vol. 51, no. 6, pp. 1809-1817, 2013.
[40] H.-Y. Wang et al., "A new scheme for strain typing of methicillin-resistant Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using machine learning approach," PloS one, vol. 13, no. 3, p. e0194289, 2018.
[41] H.-Y. Wang et al., "Matrix Assisted Laser Desorption Ionization Time of Flight Mass Analysis for Rapid Discrimination of Methicillin Resistant Staphylococcus aureus Sequence Types."
[42] M. Wolters et al., "MALDI-TOF MS fingerprinting allows for discrimination of major methicillin-resistant Staphylococcus aureus lineages," International Journal of Medical Microbiology, vol. 301, no. 1, pp. 64-68, 2011.
[43] M. Josten et al., "Identification of agr-positive methicillin-resistant Staphylococcus aureus harbouring the class A mec complex by MALDI-TOF mass spectrometry," International Journal of Medical Microbiology, vol. 304, no. 8, pp. 1018-1023, 2014.
[44] R. R. Drake, S. R. Boggs, and S. K. Drake, "Pathogen identification using mass spectrometry in the clinical microbiology laboratory," Journal of mass spectrometry, vol. 46, no. 12, pp. 1223-1232, 2011.
[45] S. Lakhundi and K. Zhang, "Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology," Clinical microbiology reviews, vol. 31, no. 4, pp. 10.1128/cmr. 00020-18, 2018.
[46] N. A. Turner et al., "Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research," Nature Reviews Microbiology, vol. 17, no. 4, pp. 203-218, 2019.
[47] A. H. Hasanpour et al., "The global prevalence of methicillin-resistant Staphylococcus aureus colonization in residents of elderly care centers: a systematic review and meta-analysis," Antimicrobial Resistance & Infection Control, vol. 12, no. 1, p. 4, 2023.
[48] D. J. Diekema, M. A. Pfaller, D. Shortridge, M. Zervos, and R. N. Jones, "Twenty-year trends in antimicrobial susceptibilities among Staphylococcus aureus from the SENTRY antimicrobial surveillance program," in Open forum infectious diseases, 2019, vol. 6, no. Supplement_1: Oxford University Press US, pp. S47-S53.
[49] S. W. Elsayed et al., "Recombination-mediated dissemination of Methicillin-resistant S. aureus clonal complex 1 in the Egyptian health care settings," Annals of Clinical Microbiology and Antimicrobials, vol. 22, no. 1, p. 109, 2023.
[50] J. Liu et al., "Antimicrobial resistance, SCC mec, virulence and genotypes of MRSA in southern China for 7 years: filling the gap of molecular epidemiology," Antibiotics, vol. 12, no. 2, p. 368, 2023.
[51] G. Kim, S. Lee, Y. Lee, J. H. Kim, and J. Lee, "The molecular epidemiology and clinical implication of methicillin-resistant Staphylococcus aureus (MRSA) sequence types in pediatric bacteremia: a restrospective observational study, 2016–2021," BMC Infectious Diseases, vol. 24, no. 1, p. 259, 2024.
[52] L. Huang et al., "Genomic characterization and outbreak investigations of methicillin-resistant Staphylococcus aureus in a county-level hospital in China," Frontiers in Microbiology, vol. 15, p. 1387855, 2024.
[53] D. Jamrozy et al., "Novel methicillin-resistant Staphylococcus aureus cc8 clone identified in a hospital setting in Armenia," Frontiers in Microbiology, vol. 10, p. 1592, 2019.
[54] S. S. Boswihi, T. Verghese, and E. E. Udo, "Diversity of clonal complex 22 methicillin-resistant Staphylococcus aureus isolates in Kuwait hospitals," Frontiers in Microbiology, vol. 13, p. 970924, 2022.
[55] K. R. Alkharsah, S. Rehman, F. Alkhamis, A. Alnimr, A. Diab, and A. K. Al-Ali, "Comparative and molecular analysis of MRSA isolates from infection sites and carrier colonization sites," Annals of clinical microbiology and antimicrobials, vol. 17, pp. 1-11, 2018.
[56] B. A. Diep, H. A. Carleton, R. F. Chang, G. F. Sensabaugh, and F. Perdreau-Remington, "Roles of 34 virulence genes in the evolution of hospital-and community-associated strains of methicillin-resistant Staphylococcus aureus," The Journal of infectious diseases, vol. 193, no. 11, pp. 1495-1503, 2006.
[57] S. Monecke et al., "Molecular typing of ST239-MRSA-III from diverse geographic locations and the evolution of the SCC mec III element during its intercontinental spread," Frontiers in microbiology, vol. 9, p. 1436, 2018.
[58] A. Heikinheimo, S. Johler, L. Karvonen, J. Julmi, M. Fredriksson-Ahomaa, and R. Stephan, "New dominant spa type t2741 in livestock-associated MRSA (CC398-MRSA-V) in Finnish fattening pigs at slaughter," Antimicrobial Resistance & Infection Control, vol. 5, pp. 1-6, 2016.
[59] P. Dhade and P. Shirke, "Federated Learning for Healthcare: A Comprehensive Review," Engineering Proceedings, vol. 59, no. 1, p. 230, 2024.
[60] F. Zhang et al., "Recent methodological advances in federated learning for healthcare," Patterns, vol. 5, no. 6, 2024.
指導教授 洪炯宗 吳立青(Jorng-Tzong Horng Li-Ching Wu) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明