博碩士論文 111522062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:185 、訪客IP:3.138.126.144
姓名 廖泓閔(Hong-Min Liao)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於神經正切核實現點雲部件切割之旋轉強健性
(Achieving Rotation Robustness in Point Cloud Part Segmentation Based on Neural Tangent Kernel)
相關論文
★ MFNet:基於點雲與RGB影像的多層級特徵融合神經網路之3D車輛偵測★ 使用bag-of-word特徵進行人臉與行為分析
★ Multi-Proxy Loss:基於度量學習提出之損失函數用於細粒度圖像檢索★ 最近特徵線嵌入網路之影像物件辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-7-2以後開放)
摘要(中) 由於實務上在進行點雲部件切割時無法保證輸入點雲始終能夠保持同一方向,因此使模型具有足夠的泛化性並具有旋轉強健性至關重要,本論文提出一種全新的旋轉強健性技術──神經正切逼近法,我們利用神經正切核來尋找旋轉角度加入訓練資料,它能夠避免對於複雜的數學與幾何學知識的要求,同時可以顯著的降低計算成本以及記憶體空間。在ShapeNetPart上進行的實驗表明了神經正切逼近法可以在保留對未旋轉點雲的高準確率的同時使模型具有旋轉強健性的能力,與ART-Point相比,我們在搜尋旋轉角度的速度上快了將近9倍,且記憶體的使用量也減少了將近1倍,同時實驗也表明了神經正切逼近法對於未旋轉點雲及旋轉後點雲的準確率皆高於ART-Point,這也顯示了我們所提出的神經正切逼近法與其他state-of-the-art方法具有可比較性。
摘要(英) In practical point cloud part segmentation applications, it is often impossible to ensure that the input point clouds keep the same orientation. Therefore, it is crucial for the model to generalize well and possess rotation robustness. This thesis proposes a novel method for achieving rotation robustness: the Neural Tangent Approximation Method. By utilizing the neural tangent kernel, we integrate augmented data with rotation angles into the training data. This approach avoids the need for complex mathematical and geometrical knowledge, significantly reducing computational costs and memory usage. Experiments conducted on the ShapeNetPart dataset demonstrate that the Neural Tangent Approximation Method maintains high accuracy for non-rotated point clouds while enhancing robustness for rotated inputs. Compared to ART-Point, our method is nearly nine times faster at searching for rotation angles and uses about half as much memory. Furthermore, our experiments show that our method surpasses ART-Point in accuracy for both non-rotated and rotated point clouds, achieving state-of-the-art performance.
關鍵字(中) ★ 部件切割
★ 旋轉強健性
★ 神經正切核
關鍵字(英) ★ Part Segmentation
★ Rotation Robustness
★ Neural Tangent Kernel
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
1. 前言 1
1.1. 研究動機 1
1.2. 研究目的 2
1.3. 論文架構 2
2. 文獻回顧 3
2.1. 三維資料表示法 3
2.2. 對抗式訓練 5
2.3. 模型可解釋性 8
2.4. 旋轉不變性 9
3. 研究方法 12
3.1. 系統架構 12
3.2. 神經正切核 12
3.3. 二元逼近法 17
3.4. 旋轉角度池 19
3.5. 神經正切逼近法 19
4. 實驗結果 22
4.1. 資料集 22
4.2. 評估指標 22
4.3. 環境設定 23
4.4. 在ShapeNetPart上的實驗結果 23
4.5. 局部實驗與分析 27
5. 結論 31
5.1. 貢獻 31
5.2. 未來展望 32
6. 參考文獻 33
參考文獻 [1] Y. Zhou and O. Tuzel, "VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2018, pp. 4490-4499.
[2] J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu, and C. Xu, "Voxel Transformer for 3D Object Detection," in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2021, pp. 3164-3173.
[3] C.-C. Wong, "Heat Diffusion Based Multi-Scale and Geometric Structure-Aware Transformer for Mesh Segmentation," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2023, pp. 4413-4422.
[4] F. Milano, A. Loquercio, A. Rosinol, D. Scaramuzza, and L. Carlone, "Primal-Dual Mesh Convolutional Neural Networks," in Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020.
[5] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[6] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space," in Advances in Neural Information Processing Systems 30 (NeurIPS 2017), 2017.
[7] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, "PointCNN: Convolution On X-Transformed Points," in Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2018.
[8] X. Ma, C. Qin, H. You, H. Ran, and Y. Fu, "Rethinking Network Design and Local Geometry in Point Cloud: A Simple Residual MLP Framework," in Proceedings of the International Conference on Learning Representations (ICLR), 2022.
[9] Z.-H. Lin, S.-Y. Huang, and Y.-C. F. Wang, "Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Convolution Networks for Point Cloud Analysis," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020, pp. 1800-1809.
[10] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," in Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2015, vol. 9351, 2015, pp. 234-241.
[11] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, "Intriguing properties of neural networks," arXiv preprint arXiv:1312.6199, 2014.
[12] I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and Harnessing Adversarial Examples," in Proceedings of the International Conference on Learning Representations (ICLR), 2015.
[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, "Towards Deep Learning Models Resistant to Adversarial Attacks," in Proceedings of the the International Conference on Learning Representations (ICLR), 2018.
[14] F. Croce and M. Hein, "Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse Parameter-free Attacks," in Proceedings of the the 37th International Conference on Machine Learning (ICML), July 2020, pp. 2206-2216.
[15] X. Jia, Y. Zhang, B. Wu, K. Ma, J. Wang, and X. Cao, "LAS-AT: Adversarial Training with Learnable Attack Strategy," in Proceedings of the the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 13388-13398.
[16] C. Xiang, C. R. Qi, and B. Li, "Generating 3D Adversarial Point Clouds," in Proceedings of the the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 9136-9144.
[17] D. Liu, R. Yu and H. Su, "Extending Adversarial Attacks and Defenses to Deep 3D Point Cloud Classifiers," in Proceedings of the the IEEE/CVF International Conference on Image Processing (ICIP), Taipei, Taiwan, 2019, pp. 2279-2283.
[18] Y. Zhao, Y. Wu, C. Chen, and A. Lim, "On Isometry Robustness of Deep 3D Point Cloud Models Under Adversarial Attacks," in Proceedings of the the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 1201-1210.
[19] J. Kim, B. -S. Hua, D. T. Nguyen and S. -K. Yeung, "Minimal Adversarial Examples for Deep Learning on 3D Point Clouds," in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 7777-7786.
[20] J. Sun, Y. Cao, C. B. Choy, Z. Yu, A. Anandkumar, Z. M. Mao, and C. Xiao, "Adversarially Robust 3D Point Cloud Recognition Using Self-Supervisions," in Proceedings of the Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021, pp. 15498-15512.
[21] M. T. Ribeiro, S. Singh, and C. Guestrin, ""Why Should I Trust You?": Explaining the Predictions of Any Classifier," arXiv preprint arXiv:1602.04938, 2016.
[22] F. Doshi-Velez and B. Kim, "Towards A Rigorous Science of Interpretable Machine Learning," arXiv preprint arXiv:1702.08608, 2017.
[23] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong, "Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges," arXiv preprint arXiv:2103.11251, 2021.
[24] M. Sundararajan, A. Taly, and Q. Yan, "Axiomatic Attribution for Deep Networks," in Proceedings of the 34th International Conference on Machine Learning(ICML), vol. 70, Aug. 2017, pp. 3319–3328.
[25] A. Jacot, F. Gabriel, and C. Hongler, "Neural Tangent Kernel: Convergence and Generalization in Neural Networks," in Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2018, pp. 8571-8580.
[26] J. Mok, B. Na, J. -H. Kim, D. Han and S. Yoon, "Demystifying the Neural Tangent Kernel from a Practical Perspective: Can it be trusted for Neural Architecture Search without training?," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 11851-11860.
[27] Z. Zhang, B.-S. Hua, D. W. Rosen, and S.-K. Yeung, "Rotation Invariant Convolutions for 3D Point Clouds Deep Learning, " in International Conference on 3D Vision (3DV), 2019, pp. 204-213.
[28] X. Li, R. Li, G. Chen, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, "A Rotation-invariant Framework for Deep Point Cloud Analysis," in IEEE Transactions on Visualization and Computer Graphics, vol. 28, no. 12, pp. 4503-4514, 1 December 2022.
[29] A. Poulenard, M.-J. Rakotosaona, Y. Ponty, and M. Ovsjanikov, “Effective Rotation-invariant Point CNN with Spherical Harmonics Kernels,” in International Conference on 3D Vision (3DV), 2019, pp. 47-56.
[30] M. Atzmon, H. Maron, and Y. Lipman. “Point Convolutional Neural Networks by Extension Operators,” arXiv preprint arXiv:1803.10091, 2018.
[31] C. Deng, Y. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, L. J. Guibas, "Vector Neurons: A General Framework for SO(3)-Equivariant Networks," in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2021, pp. 12200-12209.
[32] C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis, "Learning SO(3) Equivariant Representations with Spherical CNNs," in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 52-68.
[33] R. Kondor, Z. Lin, and S. Trivedi, "Clebsch–Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network," in Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2018, pp. 10117-10126.
[34] L. Zitnick, A. Das, A. Kolluru, J. Lan, M. Shuaibi, A. Sriram, Z. Ulissi, and B. Wood, "Spherical Channels for Modeling Atomic Interactions," in Advances in Neural Information Processing Systems 35 (NeurIPS 2022), 2022, pp. 8054-8067.
[35] R. Wang, Y. Yang, and D. Tao, "ART-Point: Improving Rotation Robustness of Point Cloud Classifiers via Adversarial Rotation," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022, pp. 14371-14380.
[36] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R. Müller, "How to Explain Individual Classification Decisions," Journal of Machine Learning Research, vol. 11, no. Jun, pp. 1803-1831, 2010.
[37] A. Kurakin, I. Goodfellow, and S. Bengio, "Adversarial Machine Learning at Scale," arXiv preprint arXiv:1611.01236, 2017.
[38] Y. Li, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, ARCewu Lu, Q. Huang, A. Sheffer, and L. Guibas, "A Scalable Active Framework for Region Annotation in 3D Shape Collections," ACM Transactions on Graphics (TOG), vol. 35, no. 6, Art. no. 210, 2016.
指導教授 范國清 韓欽銓(Kuo-Chin Fan Chin-Chuan Han) 審核日期 2024-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明