參考文獻 |
Ahmad, N., Murugesan, S., & Kshetri, N. (2023). Generative artificial intelligence and the education sector. Computer, 56(6), 72-76.
Blonder, R., Mamlock-Naaman, R., & Hofstein, A. (2008). Analyzing inquiry questions of high-school students in a gas chromatography open-ended laboratory experiment [10.1039/B812414K]. Chemistry Education Research and Practice, 9(3), 250-258. https://doi.org/10.1039/B812414K
Chan, C. K. Y., & Tsi, L. H. (2023). The AI revolution in education: Will AI replace or assist teachers in higher education? arXiv preprint arXiv:2305.01185.
Chang, C. J., Liu, C. C., Wu, Y. T., Chang, M. H., Chiang, S. F., Chiu, B. C., Wen, C. T., Hwang, F. K., Chao, P. Y., Lai, C. H., Wu, S. W., & Chang, C. K. (2016). Students′ perceptions on problem solving with collaborative computer simulation. In 24th International Conference on Computers in Education, ICCE 2016 (pp. 166-168). Asia-Pacific Society for Computers in Education.
Council, N. R., Center for Science, M., Education, E., & Inquiry, C. o. D. o. a. A. t. t. N. S. E. S. o. S. (2000). Inquiry and the national science education standards: A guide for teaching and learning. National Academies Press. https://books.google.com.tw/books?id=YNf0HXz7DzkC
de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305-308. https://doi.org/10.1126/science.1230579
de Jong, T., Sotiriou, S., & Gillet, D. (2014). Innovations in STEM education: the Go-Lab federation of online labs. Smart Learning Environments, 1(1), 3. https://doi.org/10.1186/s40561-014-0003-6
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M. A., Al-Busaidi, A. S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., . . . Wright, R. (2023). Opinion paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71. https://doi.org/10.1016/j.ijinfomgt.2023.102642
Feng, S., Magana, A. J., & Kao, D. (2021). A systematic review of literature on the effectiveness of intelligent tutoring systems in STEM.In 2021 IEEE frontiers in education conference (fie) (pp. 1-9). IEEE. https://doi.org/10.1109/fie49875.2021.9637240
Freire, S. K., Wang, C., & Niforatos, E. (2024). Chatbots in knowledge-intensive contexts: Comparing intent and LLM-based systems. ArXiv, abs/2402.04955.
Gan, W., Qi, Z., Wu, J., & Lin, C.-W. (2023). Large language models in education: Vision and opportunities. 2023 IEEE International Conference on Big Data (BigData), 4776-4785.
Gertner, A. S., & VanLehn, K. (2000, 2000, June). Andes: A coached problem solving environment for physics. In International conference on intelligent tutoring systems (pp. 133-142). Berlin, Heidelberg: Springer Berlin Heidelberg.
Gillies, R. M., Nichols, K., Burgh, G., & Haynes, M. (2014). Primary students’ scientific reasoning and discourse during cooperative inquiry-based science activities. International Journal of Educational Research, 63, 127-140. https://doi.org/https://doi.org/10.1016/j.ijer.2013.01.001
Girault, I., Peffer, M., Chiocarriello, A., Renken, M., & Otrel-Cass, K. (2016). Computer simulations on a multidimensional continuum: A definition and examples. In M. Renken, M. Peffer, K. Otrel-Cass, I. Girault, & A. Chiocarriello (Eds.), Simulations as Scaffolds in Science Education (pp. 5-14). Springer International Publishing. https://doi.org/10.1007/978-3-319-24615-4_2
Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A., & Louwerse, M. M. (2004). AutoTutor: A tutor with dialogue in natural language. Behavior Research Methods, Instruments, & Computers, 36(2), 180-192. https://doi.org/10.3758/BF03195563
Graesser, A. C., VanLehn, K., Rose, C. P., Jordan, P. W., & Harter, D. (2001). Intelligent tutoring systems with conversational dialogue. AI Magazine, 22(4), 39. https://doi.org/10.1609/aimag.v22i4.1591
Harris, C. J., Phillips, R. S., & Penuel, W. R. (2012). Examining teachers’ instructional moves aimed at developing students’ Ideas and questions in learner-centered science classrooms. Journal of Science Teacher Education, 23(7), 769-788. https://doi.org/10.1007/s10972-011-9237-0
Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99-107. https://doi.org/10.1080/00461520701263368
Hwang, G.-J., & Chang, C.-Y. (2021). A review of opportunities and challenges of chatbots in education. Interactive Learning Environments, 31(7), 4099-4112. https://doi.org/10.1080/10494820.2021.1952615
Jin, H., Lee, S., Shin, H. J., & Kim, J. (2023). Teach AI how to code: Using large language models as teachable agents for programming education. Proceedings of the CHI Conference on Human Factors in Computing Systems.
Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., . . . Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103. https://doi.org/10.1016/j.lindif.2023.102274
Kawalkar, A., & Vijapurkar, J. (2013). Scaffolding Science Talk: The role of teachers′ questions in the inquiry classroom. International Journal of Science Education, 35(12), 2004-2027. https://doi.org/10.1080/09500693.2011.604684
Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research in Science Teaching, 40(9), 898-921. https://doi.org/10.1002/tea.10115
Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.
Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development. FT press.
Kuhn, D., & Pease, M. (2008). What needs to develop in the development of inquiry skills? Cognition and Instruction, 26(4), 512-559. https://doi.org/10.1080/07370000802391745
Lai, C.-L., Hwang, G.-J., & Tu, Y.-H. (2018). The effects of computer-supported self-regulation in science inquiry on learning outcomes, learning processes, and self-efficacy. Educational Technology Research and Development, 66(4), 863-892. https://doi.org/10.1007/s11423-018-9585-y
Latham, A., Crockett, K., McLean, D., & Edmonds, B. (2012). A conversational intelligent tutoring system to automatically predict learning styles. Computers & Education, 59(1), 95-109. https://doi.org/https://doi.org/10.1016/j.compedu.2011.11.001
Latham, A. M., Crockett, K. A., McLean, D. A., Edmonds, B., & O′shea, K. (2010, July). Oscar: An intelligent conversational agent tutor to estimate learning styles. In International conference on fuzzy systems (pp. 1-8). IEEE.
Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86, 681 - 718.
Limna, P., Kraiwanit, T., Jangjarat, K., Klayklung, P., & Chocksathaporn, P. (2023). The use of ChatGPT in the digital era: Perspectives on chatbot implementation., 6. https://doi.org/10.37074/jalt.2023.6.1.32
Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE design for knowledge integration. Science Education, 87(4), 517-538. https://doi.org/https://doi.org/10.1002/sce.10086
Madhuri, G. V., Kantamreddi, V. S. S. N., & Prakash Goteti, L. N. S. (2012). Promoting higher order thinking skills using inquiry-based learning. European Journal of Engineering Education, 37, 117 - 123.
Maeots, M., Pedaste, M., & Sarapuu, T. (2011, July). Interactions between inquiry processes in a web-based learning environment. In 2011 IEEE 11th International Conference on Advanced Learning Technologies (pp. 331-335). IEEE.
Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. Am Psychol, 59(1), 14-19. https://doi.org/10.1037/0003-066x.59.1.14
McElhaney, K. W., & Linn, M. C. (2011). Investigations of a complex, realistic task: Intentional, unsystematic, and exhaustive experimenters. Journal of Research in Science Teaching, 48(7), 745-770. https://doi.org/https://doi.org/10.1002/tea.20423
Ng, D. T. K., Tan, C. W., & Leung, J. K. L. (2024). Empowering student self‐regulated learning and science education through ChatGPT: A pioneering pilot study. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13454
Nwana, H. S. (1990). Intelligent tutoring systems: an overview. Artificial Intelligence Review, 4(4), 251-277. https://doi.org/10.1007/BF00168958
OpenAI. Prompt engineering. https://platform.openai.com/docs/guides/prompt-engineering
OpenAI. (2022). Introducing ChatGPT. https://openai.com/index/chatgpt/
Pardos, Z. A., & Bhandari, S. (2023). Learning gain differences between ChatGPT and human tutor generated algebra hints. ArXiv, abs/2302.06871.
Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47-61. https://doi.org/10.1016/j.edurev.2015.02.003
Pyatt, K., & Sims, R. (2012). Virtual and physical experimentation in inquiry-based science labs: Attitudes, performance and access. Journal of Science Education and Technology, 21(1), 133-147. https://doi.org/10.1007/s10956-011-9291-6
Qadir, J. (2023, 1-4 May 2023). Engineering education in the era of ChatGPT: Promise and pitfalls of generative AI for education. In: 2023 IEEE Global Engineering Education Conference (EDUCON). IEEE, 2023. p. 1-9.
Richards, J., Barowy, W., & Levin, D. (1992). Computer simulations in the science classroom. Journal of Science Education and Technology, 1(1), 67-79. https://doi.org/10.1007/BF00700244
Rus, V., D′Mello, S., Hu, X., & Graesser, A. C. (2013). Recent advances in conversational intelligent tutoring systems. AI Magazine, 34(3), 42-54. https://doi.org/https://doi.org/10.1609/aimag.v34i3.2485
Safitri, R. E., & Widjajanti, D. B. (2019). The effect of inquiry in scientific learning on students’ self-confidence. Journal of Physics: Conference Series, 1157.
Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., Cancedda, N., & Scialom, T. (2023). Toolformer: Language models can teach themselves to use tools. ArXiv, abs/2302.04761.
Tuan, H. L., Chin, C. C., & Shieh, S. H. (2005). The development of a questionnaire to measure students′ motivation towards science learning. International Journal of Science Education, 27(6), 639-654. https://doi.org/10.1080/0950069042000323737
Urban, M., Děchtěrenko, F., Lukavský, J., Hrabalová, V., Svacha, F., Brom, C., & Urban, K. (2024). ChatGPT improves creative problem-solving performance in university students: An experimental study. Computers & Education, 215, 105031. https://doi.org/https://doi.org/10.1016/j.compedu.2024.105031
Veletsianos, G., & Russell, G. S. (2014). Pedagogical agents. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of Research on Educational Communications and Technology (pp. 759-769). Springer New York. https://doi.org/10.1007/978-1-4614-3185-5_61
Volkmann, M. J., Abell, S. K., & Zgagacz, M. (2005). The challenges of teaching physics to preservice elementary teachers: Orientations of the professor, teaching assistant, and students. Science Education, 89, 847-869.
Wieman, C. E., Adams, W. K., & Perkins, K. K. (2008). PhET: Simulations that enhance learning. Science, 322(5902), 682-683. https://doi.org/10.1126/science.1161948
Xiao, J., & Bai, Q. (2022, 19-22 July 2022). iTutor: Promoting AI guided knowledge interaction in online learning. In 2022 International Symposium on Educational Technology (ISET) (pp. 253-257). IEEE.
Zhao, P., Zhang, H., Yu, Q., Wang, Z., Geng, Y., Fu, F., Yang, L., Zhang, W., & Cui, B. (2024). Retrieval-augmented generation for ai-generated content: A survey. ArXiv, abs/2402.19473.
Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li, Y., Tang, X., Liu, Z., . . . Wen, J.-r. (2023). A survey of large language models. ArXiv, abs/2303.18223. |