參考文獻 |
[1] Vaswani, A. (2017). Attention is all you need. Advances in Neural Information Processing Systems.
[2] Takahashi, A., Koda, Y., Ito, K., & Aoki, T. (2020, September). Fingerprint feature extraction by combining texture, minutiae, and frequency spectrum using multi-task CNN. In 2020 IEEE international joint conference on biometrics (IJCB) (pp. 1-8). IEEE.
[3] Grosz, S. A., & Jain, A. K. (2023). Afr-net: Attention-driven fingerprint recognition network. IEEE Transactions on Biometrics, Behavior, and Identity Science.
[4] https://www.image-net.org/challenges/LSVRC/
[5] Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. arXiv preprint arXiv:1404.5997.
[6] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
[7] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
[8] Koch, G., Zemel, R., & Salakhutdinov, R. (2015, July). Siamese neural networks for one-shot image recognition. In ICML deep learning workshop (Vol. 2, No. 1, pp. 1-30).
[9] Hoffer, E., & Ailon, N. (2015). Deep metric learning using triplet network. In Similarity-based pattern recognition: third international workshop, SIMBAD 2015, Copenhagen, Denmark, October 12-14, 2015. Proceedings 3 (pp. 84-92). Springer International Publishing.
[10] Howard, A. G. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
[11] Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR.
[12] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., ... & Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 10012-10022).
[13] Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. Advances in neural information processing systems, 28.
[14] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
[15] Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).
[16] Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning (pp. 6105-6114). PMLR.
[17] Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[18] Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International conference on machine learning (pp. 1597-1607). PMLR.
[19] He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 9729-9738).
[20] Grill, J. B., Strub, F., Altche, F., Tallec, C., Richemond, P., Buchatskaya, E., ... & Valko, M. (2020). Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural information processing systems, 33, 21271-21284.
[21] Zbontar, J., Jing, L., Misra, I., LeCun, Y., & Deny, S. (2021, July). Barlow twins: Self-supervised learning via redundancy reduction. In International conference on machine learning (pp. 12310-12320). PMLR.
[22] FastEnhanceTexture. https://github.com/luannd/MinutiaeNet/blob/master/CoarseNet/MinutiaeNet_utils.py.
[23] Engelsma, J. J., Grosz, S., & Jain, A. K. (2022). Printsgan: Synthetic fingerprint generator. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5), 6111-6124. |