博碩士論文 111523005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:178 、訪客IP:18.224.73.124
姓名 簡睿燊(Jui-Shen Chien)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 應用於5G NR隨機存取程序之檢測與參數估計研究
(Detection and Parameter Estimation in Random Access Process of 5G New Radio)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在第五代行動通訊系統(5th generation wireless communication system, 5G)新無線電(New Radio, NR)的隨機存取(random access, RA)程序中,物理隨機存取通道(physical random access channel, PRACH)將使用基於Zadoff-Chu (ZC)序列的前導格式。然而,廣泛使用的ZC序列作為RA前導具有一定的限制,限制了可以生成的前導總數,導致PRACH容量不足的問題,迫使前導的重複使用。為了解決這個問題,使用覆蓋序列的概念,提出了在文獻中兩種擴展的常振幅零自相關(constant amplitude zero auto correlation, CAZAC)序列結構,使前導容量增加,其中也有包括ZC序列,與當前的5G PRACH設計相容,也符合第三代合作夥伴計畫(3rd generation partnership project, 3GPP)的標準規格。這兩種構造都具有理想的子集結構,從而產生一個自然的蜂窩網絡序列分配,在該分配中,每個特定於單元的序列子集具有可控的低相關區域,類似於ZC序列。
本篇論文將考慮了載波頻率偏移(carrier frequency offset, CFO)和時序誤差(timing error, TE)在ZC序列與文獻中的兩種序列為具有m序列覆蓋的ZC序列(ZC sequences with m-sequence covers, ZCm)和具有Alltop序列覆蓋的ZC序列(ZC sequences with Alltop sequence covers, ZCa)進行模擬比較,從多接收天線上的檢測與估計,以及週期相關性和多樣性組合的影響等等方面評估前導序列的性能。除此之外,還探討了各個序列在峰值對平均功率比(peak to average power ratio, PAPR)和立方度量(cubic metric, CM)的性能比較分析。
摘要(英) In the random access (RA) procedure of the New Radio (NR) technology in the 5th generation wireless communication system (5G), the physical random access channel (PRACH) uses a preamble format based on Zadoff-Chu (ZC) sequences. However, the widely used ZC sequences as RA preambles have certain limitations, restricting the total number of preambles that can be generated, leading to insufficient PRACH capacity and necessitating the reuse of preambles. To address this issue, the concept of covering sequences is used, and two extended constant amplitude zero auto correlation (CAZAC) sequence structures are proposed in the literature to increase preamble capacity, which include the ZC sequences and are compatible with the current 5G PRACH design, as well as compliant with the 3rd generation partnership project (3GPP) standards specifications. These two constructions both have ideal subset structures, resulting in a natural cellular network sequence allocation where each cell-specific subset of sequences has controllable low-correlation regions, similar to the ZC sequences.
This thesis considers the effects of carrier frequency offset (CFO) and timing error (TE) on ZC sequences and two types of sequences found in the literature: ZC sequences with m-sequence covers (ZCm) and ZC sequences with Alltop sequence covers (ZCa). Simulations are conducted to compare effectiveness of these sequences in terms of detection and estimation across multiple receiving antennas, evaluating the impact of periodic correlation and diversity combining. Additionally, the performance of each sequence is analyzed in terms of peak to average power ratio (PAPR) and cubic metric (CM).
關鍵字(中) ★ 第五代行動通訊系統
★ 立方度量
★ 新無線電
★ 物理隨機存取通道
★ 峰值對平均功率比
★ ZC序列
關鍵字(英) ★ 5G
★ CM
★ NR
★ PRACH
★ PAPR
★ ZC sequence
論文目次 摘 要 i
Abstract ii
致 謝 iii
圖目錄 vi
表目錄 viii
第一章 序論 - 1 -
研究背景 - 1 -
研究動機 - 3 -
第二章 PRACH及前導碼介紹 - 4 -
2.1隨機存取流程 - 4 -
2.2 PRACH及前導碼 - 6 -
第三章 PRACH系統模型 - 9 -
3.1前導碼設計 - 9 -
3.1.1 ZC序列 - 9 -
3.1.2 ZCm序列 - 11 -
3.1.3 ZCa序列 - 12 -
3.2訊號模型 - 14 -
第四章 PRACH前導檢測及特性分析 - 17 -
4.1前導檢測與估計算法 - 17 -
4.1.1 決定閾值設定 - 17 -
4.1.2 前導檢測 - 19 -
4.1.3 TE估計方法 - 21 -
4.2 前導自相關性 - 22 -
4.3 PAPR與CM - 23 -
第五章 模擬結果與討論 - 24 -
5.1 無CFO情況下的比較 - 25 -
5.2 有CFO情況下的比較 - 29 -
5.3 TE的估計 - 33 -
5.4 CFO的影響 - 34 -
5.5 前導容量比較 - 36 -
5.6 PAPR與CM模擬比較 - 37 -
第六章 結論 - 39 -
參考文獻 - 40 -
參考文獻 [1] 3GPP, TR128.913, “5G;Study on Scenarios and Requirements for Next Generation Access Technologies,” version 14.2.0 Realse 14, May 2017.
[2] Recommendation ITU-R M.2083-0, “IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond”.
[3] 3GPP TS 38.321, “Medium Access Control (MAC) protocol specification,” version 16.1.0 Release 16, July 2020.
[4] R. C. Heimiller, ""Phase shift pulse codes with good periodic correlation properties," IRE Transactions on Information Theory, vol. Vol.IT7, pp. 254-257, Oct 1961.
[5] R. L.FrankandS.A.Zadoff, "Phase shift pulse codes with good periodic correlation properties," IRE Transactions on Information Theory, vol. Vol 8, pp. 381-382, Oct 1962.
[6] DavidC.CHU, "Polyphase codes withgoodperiodic correlation properties," IEEE Transactions on InformationTheory, pp. 531-532, July 1972.
[7] 3GPP TS 38.211, “Technical Specification Group Radio Access Network; NR,” Physical channels and modulation,version 15.3.0, Sep 2018.
[8] R.-A. Pitaval, B. M. Popovic, F. Berggren, and P. Wang, “Overcoming 5G PRACH capacity shortfall by combining zadoff-chu and M-sequences,” in Proc. IEEE Int. Conf. Commun. (ICC), pp. 1-6, May 2018.
[9] R.-A. Pitaval, B. M. Popovi´c, P. Wang, and F. Berggren, "Overcoming 5G PRACH Capacity Shortfall: Supersets of Zadoff–Chu Sequences With Low-Correlation Zone," IEEE Transactions on Communications, vol. 68, no. 9, p. 5673–5688, Sep 2020.
[10] PRACH Preamble Sequences for NR, document R1-1705055,3GPP TSG RAN WG1, Meeting 88bis, Huawei, HiSilicon, Spokane, WA, USA, May 2017.
[11] PRACH Preamble Sequences and Formats, document R1-1708164,3GPP TSG RAN WG1, Meeting 89, Huawei, HiSilicon, Hangzhou, May 2017.
[12] S. Sesia, M. Baker, and I. Toufik, “LTE-The UMTS Long Term Evolution From:Theory to Practice,” John Wiley & Sons, 2011.
[13] Final Report, document R1-1712032, RAN1, 3GPP TSG RAN WG1,Meeting AH NR 2, Qingdao, China, Jun 2017.
[14] Final Report, document R1-1716941,3GPP TSG RAN WG1, Meeting, Prague, Czech Republic, Aug 2017.
[15] NR PRACH Design and Evaluations, document R1-1706014, Ericsson,3GPP TSG RAN WG1, Meeting, Reno, NV, USA, Apr 2017.
[16] K.-U. Schmidt, "Sequence families with low correlation derived from multiplicative and additive characters," IEEE Trans. Inf. Theory, vol. 57, no. 4, pp. 2291-2294, Apr 2011.
[17] PRACH Design Consideration, document R1-1700790, Qualcomm Incorporated,3GPP TSG RAN WG1, Meeting AH NR, Spokane, USA, Jan 2017.
[18] Discussion on PRACH Preamble for Capacity Enhancement, document R1-1710269, LG Electronics, 3GPP TSG RAN WG1, Meeting AH NR, Qingdao, China, Jun 2017.
[19] RACH Preamble Sequences and Formats for Capacity Enhancement and Beam Management, document R1-1712152, Huawei, HiSilicon, 3GPP TSG RAN WG1, Meeting, Prague, Czech Republic, Aug 2017.
[20] G. Schreiber and M. Tavares, “5G new radio physical random access preamble design,” in Proc. IEEE 5G World Forum (GWF), pp. 215-220, Jul 2018.
[21] R. W. Heath, T. Strohmer, and A. J. Paulraj, "On quasi-orthogonal signatures for CDMA systems," IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1217-1226, Mar 2006.
[22] W. Alltop, "Complex sequences with low periodic correlations (Corresp.)," IEEE Trans. Inf. Theory, Vols. IT-26, no. 3, pp. 350-354, May 1980.
[23] Y. Wen, W. Huang, and Z. Zhang, "CAZAC sequence and its application in LTE random access," in Proc. IEEE Information Theory Workshop(ITW′06), p. 544–547, Oct 2006.
[24] I. Vukovic, J. Tormalehto, S. Nagaraj, and T. Frey, "Impact of AWGN Channel on LTE RACH Throughput," in Proc. IEEE 82nd Veh. Technol.Conf. (VTC-Fall). IEEE, pp. 1-6, Sep 2015.
[25] J.G. Proakis, Digital Communications (2nd Edition), McGraw-Hill, 1989.
[26] T. A. Pham and B. T. Le, "A proposed preamble detection algorithm for 5G-PRACH," in 2019 International Conference on Advanced Technologies for Communications (ATC). IEEE, pp. 210-214, 2019.
[27] M. Hua, M. Wang, K. W. Yang, and K. J. Zou, "Analysis of the frequency offset effect on Zadoff-Chu sequence timing performance," IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 62, no. 11, pp. 4024-4039, Nov 2014.
[28] X. Ma, H. Kobayashi, and S. C. Schwartz, "Effect of frequency offset on ber of ofdm and single carrier systems," in 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, vol. 3, pp. 2239-2243, 2003.
[29] Y. Rahmatallah and S. Mohan, "Peak-to-average power ratio reduction in ofdm systems: A survey and taxonomy," IEEE communications surveys & tutorials, vol. 15, no. 4, pp. 1567-1592, 2013.
指導教授 林嘉慶(Jia-Chin Lin) 審核日期 2024-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明