以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:113 、訪客IP:3.136.236.126
姓名 陳昱存(CHEN,YU-TSUN) 查詢紙本館藏 畢業系所 通訊工程學系 論文名稱 基於反射分量補償之低仰角雷達目標追蹤演算法
(Low-Altitude Radar Target Tracking Algorithm with Reflection Components Compensation)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2026-12-31以後開放) 摘要(中) 本研究探討了低角度估計技術,並聚焦於三個主要領域:陣列天線技術、數據融合技術和信號處理技術。我們的研究動機是提升低角度目標估計的準確性,並提出改進的擴展卡爾曼濾波(EKF)方法,以補償反射分量對估計結果的影響。我們首先介紹了系統模型,然後詳細描述了EKF及其改進方法,包括多頻EKF技術及其在補償反射分量影響方面的應用。為進一步提高估計性能,我們引入了波束成形技術。模擬結果表明,改進的EKF方法和多頻EKF方法在低角度目標估計中具有顯著優勢,特別是在存在反射分量的情況下。結論部分總結了我們的方法及其效果,並對未來的研究方向提出建議。此研究為低角度估計技術提供了一個有效的解決方案,對相關領域的進一步研究和實際應用具有重要意義。 摘要(英) This study explores low-angle estimation techniques, focusing on three main areas: array antenna technology, data fusion technology, and signal processing technology. Our research motivation is to enhance the accuracy of low-angle target estimation and propose an improved Extended Kalman Filter (EKF) method to compensate for the impact of reflected components on the estimation results.We first introduce the system model, followed by a detailed description of the EKF and its improved methods, including the multi-frequency EKF technique and its application in compensating for the influence of reflected components. To further improve estimation performance,we incorporate beamforming technology.Simulation results indicate that the improved EKF methods and multi-frequency EKF methods have significant advantages in low-angle target estimation, especially in the presence of reflected components. The conclusion section summarizes our methods and their effectiveness, and proposes suggestions for future research directions.This research provides an effective solution for low-angle estimation techniques, which holds significant importance for further research and practicalapplications in related fields. 關鍵字(中) ★ 擴展卡爾曼濾波
★ 低角度目標追蹤
★ 到達角度估計
★ 波束形成關鍵字(英) ★ EKF
★ Low-Angle Target Tracking
★ DOA Estimation
★ Beamforming論文目次 目錄
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
致謝詞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
第1 章序論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 陣列天線技術. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 數據融合技術. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 信號處理技術. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 章節架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
第2 章系統模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 一般訊號傳輸模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 幾何參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 鏡面反射分量模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 漫反射分量模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
第3 章卡曼濾波器系統設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 MUSIC 演算法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 擴展型卡爾曼濾波器(Extended Kalman Filter) 演算法. . . . . . 17
3.3 額外修正反射分量擴展型卡爾曼濾波器. . . . . . . . . . . . . . . . . . 20
3.4 頻率多樣性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 基於加權的頻率多樣性(WFD) . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 額外修正反射分量擴展型卡爾曼濾波器(多頻) . . . . . . . . 27
第4 章模擬結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1 目標狀態估計與RMSE 分析. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 誤差分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 考慮實際估計誤差分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 幾何參數與物理參數的影響. . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 初值的影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
第5 章結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
圖目錄
圖2.1多路徑幾何傳輸模型圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
圖3.1反射分量估計流程圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
圖3.2遞迴運算過程圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
圖4.1追蹤目標仰角估計與範圍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
圖4.2仰角估計RMSE 圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
圖4.3追蹤目標角速度估計與範圍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
圖4.4角速度估計RMSE 圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
圖4.5追蹤目標高度估計與範圍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
圖4.6高度估計RMSE 圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
圖4.7提出的方法在單頻與多頻的估計表現圖. . . . . . . . . . . . . . . . . . . . . . . . . 37
圖4.8提出的方法在單頻與多頻估計RMSE 圖. . . . . . . . . . . . . . . . . . . . . . . . . 38
圖4.9追蹤目標高度與仰角圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
圖4.10仰角估計的分布圖(單頻) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
圖4.11仰角估計的分布圖(多頻) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
圖4.12仰角估計的分布圖(σh = 0.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
圖4.13仰角估計的分布圖(σh = 0.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
圖4.14角速度估計的分布圖(σh = 0.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
圖4.15角速度估計的分布圖(σh = 0.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
圖4.16高度估計的分布圖(σh = 0.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
圖4.17高度估計的分布圖(σh = 0.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
圖4.18RMSE 對SNR 圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
圖4.19模擬實際估計誤差RMSE 圖(a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
圖4.20模擬實際估計誤差RMSE 圖(b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
圖4.21模擬實際估計誤差RMSE 圖(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
圖4.22初值影響圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
表目錄
表3.1所需參數設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
表4.1模擬環境參數設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
表4.2目標距離(R) 與反射面材料(ϵ,σ) 對反射分量的影響關係. . . . . . . . . . . 48
表4.3模擬情況設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
表4.4光滑環境(σh = 0.2) 影響分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
表4.5粗糙環境(σh = 0.8) 影響分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
表4.6模擬初值設置. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54參考文獻 [1] J. Tan and Z. Nie, “Cramer-rao bound of low angle estimation
for vhf monostatic mimo radar,” in 2018 IEEE Radar Conference
(RadarConf18), 2018, pp. 0158–0163.
[2] J. Ma, H. Ma, H. Liu, W. Liu, and X. Cheng, “A novel doa estimation
for low-elevation target method based on multiscattering center
equivalent model,” IEEE Geoscience and Remote Sensing Letters,
vol. 20, pp. 1–5, 2023.
[3] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Transactions on Antennas and Propagation, vol. 34,
no. 3, pp. 276–280, 1986.
[4] D. Tufts and R. Kumaresan, “Estimation of frequencies of multiple
sinusoids: Making linear prediction perform like maximum likelihood,”
Proceedings of the IEEE, vol. 70, no. 9, pp. 975–989, 1982.
[5] R. Kumaresan and D. W. Tufts, “Estimating the angles of arrival of
multiple plane waves,” IEEE Transactions on Aerospace and Electronic
Systems, vol. AES-19, no. 1, pp. 134–139, 1983.
[6] P. Hargrave, “A tutorial introduction to kalman filtering,” in IEE
Colloquium on Kalman Filters: Introduction, Applications and Future
Developments, 1989, pp. 1/1–1/6.
[7] I. Greenberg, N. Yannay, and S. Mannor, “Noise estimation is not
optimal: How to use kalman filter the right way,” 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:233738853
[8] P. S. Madhukar and L. Prasad, “State estimation using extended
kalman filter and unscented kalman filter,” in 2020 International
Conference on Emerging Trends in Communication, Control and
Computing (ICONC3), 2020, pp. 1–4.
[9] X. Wang, C. Chen, and W. Jiang, “Implementation of real-time lcmvadaptive digital beamforming technology,” in 2018 International
Conference on Electronics Technology (ICET), 2018, pp. 134–137.
[10] B. Yin and J. Chen, “Application of adaptive beamforming technology
in underwater acoustic,” in 2023 3rd International Conference
on Neural Networks, Information and Communication Engineering
(NNICE), 2023, pp. 219–223.
[11] D. C. Dalwadi and H. B. Soni, “A novel channel estimation technique
of mimo-ofdm system based on extended kalman filter,” in
2017 4th International Conference on Electronics and Communication
Systems (ICECS), 2017, pp. 158–163.
[12] J. A. Ortiz, N. Aboserwal, and J. L. Salazar, “A new analytical
model based on diffraction theory for predicting cross-polar patterns
of antenna elements in a finite phased array,” in 2019 IEEE International
Symposium on Phased Array System & Technology (PAST),
2019, pp. 1–4.
[13] A. P. Strelnikov, A. S. Volkov, A. A. Bakhtin, A. V. Gorelik,
and V. A. Kobzev, “Alamouti scheme and spatial diversity mimo
algorithms,” in 2021 IEEE East-West Design & Test Symposium
(EWDTS), 2021, pp. 1–6.
[14] S.-J. Kim and S.-K. Han, “Power efficiency analysis of spatial diversity
based vertical fso links with pointing error in multiple beam
transmissions,” IEEE Access, vol. 10, pp. 129 925–129 931, 2022.
[15] Y. Liu, Z. Zhang, C. Zhou, and Z. Shi, “Gridless bayesian inference
for doa estimation with coprime array,” in 2023 IEEE International
Radar Conference (RADAR), 2023, pp. 1–6.
[16] Z. Wan, C. Xing, and S. Jiang, “Direction of arrival estimation of
underwater acoustic target based on off-grid sparse bayesian inference,”
in 2021 OES China Ocean Acoustics (COA), 2021, pp. 807–
810.
[17] X. Qu, “A mini-max robust estimation fusion in distributed multisensor
target tracking systems,” in 2012 International Conference
on Computational Problem-Solving (ICCP), 2012, pp. 178–181.
[18] X. Yang, W.-A. Zhang, L. Yu, and K. Xing, “Multi-rate distributed
fusion estimation for sensor network-based target tracking,” IEEE
Sensors Journal, vol. 16, no. 5, pp. 1233–1242, 2016.
[19] J. Duplouy, C. Morlaas, H. Aubert, P. Potier, P. Pouliguen, and
C. Djoma, “Wideband and reconfigurable vector antenna using radiation
pattern diversity for 3-d direction-of-arrival estimation,” IEEE
Transactions on Antennas and Propagation, vol. 67, no. 6, pp.
3586–3596, 2019.
[20] C.-y. Kang, W.-T. Fan, X.-h. Zhang, and J. Li, “A kind of method
for direction of arrival estimation based on blind source separation
demixing matrix,” in 2012 8th International Conference on Natural
Computation, 2012, pp. 134–137.
[21] R. Dutt, S. Mondal, and A. Acharyya, “Single channel blind source
separation using dual extended kalman filter,” in 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), 2021, pp.
1–5.
[22] F. Dong, L. Xu, and X. Li, “Particle filter algorithm for doa tracking
using co-prime array,” IEEE Communications Letters, vol. 24,
no. 11, pp. 2493–2497, 2020.
[23] X. Zhong, A. B. Premkumar, and A. S. Madhukumar, “Particle filtering
and posterior cramér-rao bound for 2-d direction of arrival
tracking using an acoustic vector sensor,” IEEE Sensors Journal,
vol. 12, no. 2, pp. 363–377, 2012.
[24] D. E. Kerr, Propagation of short radio waves. IET, 1987, vol. 24.
[25] D. Northam, “A stochastic simulation of low grazing angle, forward
scatter, over-water multipath effects,” NRL report, vol. 8568, p. 31,
1981.
[26] C. Beard, “Coherent and incoherent scattering of microwaves from
the ocean,” IRE Transactions on Antennas and Propagation, vol. 9,
no. 5, pp. 470–483, 1961.
[27] M. Fallah and S. A. Edalatpanah, “On the some new preconditioned
generalized aor methods for solving weighted linear least squares
problems,” IEEE Access, vol. 8, pp. 33 196–33 201, 2020.
[28] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Journal of Basic Engineering, vol. 82, pp. 35–45, 03
1960.指導教授 張大中(Dah-Chung Chang) 審核日期 2024-8-16 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare