博碩士論文 111523045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.97.14.84
姓名 蕭彧(Yu Siao)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於用戶設備之5G分散式排程器之研製
(The Design and Implementation of Distributed Scheduler Based on User Equipment for 5G)
相關論文
★ 利用智慧天線系統實現精準室內定位技術★ 電力線通訊之競爭存取與路由方法設計與實現
★ 設計與實作基於GRAPES函式庫之P2P即時串流系統★ 利用離散餘弦基礎之聲音浮水印達到室內定位技術
★ 利用虛擬指紋建置法之智慧型天線系統實現精準室內定位技術★ 即時影像串流自適應播放系統之研究
★ 利用模糊邏輯控制器於蜂巢式網路降低位置管理機制成本★ 基於支持向量機及模糊推理之地震預警系統研製
★ 基於行動裝置之分散式多人會議系統★ 以分群為基礎之3D無線與光學網路晶片頻道存取方法
★ 基於收前先聽LBR機制之授權型輔助接入LAA架構下於異質網路中暴露節點之研究★ 支援跳頻之IEEE 802.15.4 ZigBee無線隨身網路機制設計與實現
★ 應用於IEEE 802.16行動無線都會網路省電模式參數設定之智慧策略★ IEEE 802.15.4 ZigBee 無線隨身網路高效能路由演算法分析與設計
★ 應用於IEEE 802.16無線寬頻都會網路之具調適性自動重傳請求回報機制★ 無線感測網路為基礎之空間平面圖自動建構之技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 第五代行動通訊 (5G New Radio,5G NR) 快速發展,滿足了各種商業需求並為大量用戶提供服務。隨著通信需求之增長,毫米波頻段 (mini-meter Wave,mmWave) 被提出使用,其特性為子載波間隔 (Subcarrier Spacing,SCS) 被放大,因而導致資源排程之時隙 (Slot) 時間被縮短。此變化對於基地台 (Next Generation Node B,gNB) 內之排程器設計構成挑戰。
本研究提出了一種基於用戶設備 (User Equipment,UE) 之分散式排程器(Distributed Scheduler) 架構用於上行傳輸。透過將部分排程工作分配給UE,減輕gNB之排程負擔。gNB將排程器所需之排程資訊封裝於所設計之下行排程資訊 (Downlink Scheduling Information,DSI),其包含UE之5G服務品質指標 (5G QoS Identifier,5QI)、緩衝狀態報告 (Buffer Status Report,BSR) 等基本控制信息,並傳送給相關 UE作為排程器所需之輸入資訊。相關UE執行排程後將產生如同gNB排程器輸出之UE所需下行控制訊息 (Downlink Control Information,DCI)。UE分別取回與自己相關之DCI,如同gNB執行排程後將對應DCI傳送給UE。因gNB未參與實際排程,因此UE傳送上行資料之頻域與時域資源之資訊需先以上行排程信息 (Uplink Scheduling Information,USI) 回傳至gNB,以完成gNB正確接收UE之傳輸資料。
為了驗證分散式排程器於5G NR之可行性,本研究使用開源軟體OpenAirInterface5G (OAI) 進行實際驗證。透過將排程器由gNB端移植至UE端,實現基於UE之分散式排程器。
摘要(英) The 5G New Radio (NR) network is developing to accommodate various business requirements and offer extensive coverage to a substantial user population. To handle the growth of traffic, the mini-meter Wave (mmWave) band is utilized, in which the Subcarrier Spacing (SCS) is increased due to the characteristic of high-frequency band. As consequence, the time slot of radio resource scheduling is decreased. The change becomes a new challenge to the scheduling design in the next generation Node B (gNB)。
This thesis proposes that all User Equipment (UE) schedules their uplink transmission in coordinated and distributed manners in order to reduce the scheduling loading in the gNB. To realize it, the essential scheduling information of the scheduler, such as 5G QoS Identifier (5QI), Buffer Status Report (BSR) and other transmission control information, is encapsulated into the Downlink Scheduling Information (DSI). The DSI is sent to the corresponding UEs for performing distributed scheduling by restoring the essential scheduling information required for the scheduler. Every UE preforms scheduling will obtain the same scheduling result, i.e., the Downlink Control Information (DCI) of corresponding UEs, as that derived by the gNB. A UE retrieving the corresponding DCI from the scheduling result looks like it receives the DCI sent from the gNB. As the gNB does not involve the scheduling, the information about the UL resource used by a UE is needed to be encapsulated into an Uplink Scheduling Information (USI) and sent from UE to gNB before UL transmission, in order to make sure that gNB is able to receive the UL data transmitted from UE.
Finally, the open-source program OpenAirInterface5G (OAI) is used in this study for validating the feasibility of the proposed distributed scheduler in 5G NR. By moving the scheduler from the gNB to the UE, the UE based distributed scheduler is put into practice.
關鍵字(中) ★ 第五代行動通訊
★ 分散式排程器
★ 下行控制訊息
關鍵字(英) ★ DCI
★ Distributed Scheduler
★ New Radio
論文目次 中文摘要 i
ABSTRACT ii
CONTENTS iv
LIST OF FIGURES v
LIST OF TABLES vi
Chapter 1. INTRODUCTION 1
Chapter 2. BACKGROUND 3
2.1 Scheduler Description 3
2.2 5G QoS Identifier and Buffer Status Report 3
2.3 Centralized and Distributed Scheduler 4
2.4 Downlink Control Information (DCI) 5
2.5 PUSCH and UL-SCH Transmission 7
Chapter 3. RELATED WORKS 10
Chapter 4. DESIGN 12
4.1 System Architecture 12
4.1.1 Slot Configuration 12
4.1.2 Downlink Scheduling Information (DSI) 12
4.1.3 Uplink Scheduling Information (USI) 14
4.2 Design of Distributed Scheduler 14
Chapter 5. SYSTEM EVALUATIONS AND IMPLEMENTATION 17
5.1 Result Evaluation 17
5.2 The Implementation in OpenAirInterface5G 17
5.2.1 System Setup 21
5.2.2 Implementation 21
Chapter 6. CONCLUSION AND FUTURE WORK 27
REFERENCES 28
參考文獻 [1] 3GPP TS 23.501 “5G; NR; System architecture for the 5G System (5GS),” v17.7.0, Jan. 2023.
[2] 3GPP TS 38.101-1 “5G; NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone,” v17.6.0, Aug. 2022.
[3] 3GPP TS 38.101-2 “5G; NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone,” v17.8.0, Jan. 2023.
[4] 3GPP TS 38.300 “5G; NR; NR and NG-RAN Overall description; Stage-2,” v17.1.0, Aug. 2022.
[5] 3GPP TS 38.211 “5G; NR; Physical channels and modulation,” v17.2.0, Jul. 2022.
[6] 3GPP TS 38.214 “5G; NR; Physical layer procedures for data,” v17.2.0, Jul. 2022.
[7] 3GPP TS 38.213 “5G; NR; Physical layer procedures for control,” v17.2.0, Jul. 2022.
[8] 3GPP TS 38.321 “5G; NR; Medium Access Control (MAC) protocol specification,” v17.1.0, Aug. 2022.
[9] 3GPP TS 38.331 “5G; NR; Radio Resource Control (RRC); Protocol specification,” v17.1.0, Aug. 2022.
[10] O. Beaumont and L. Carter. Centralized versus Distributed Schedulers For Multiple Bag-of-Task Applications. In Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, pages 10 pp.–, April 2006.
[11] S. Wu and Y. Qi, “Centralized and distributed schedulers for non-coherent joint transmission,” in Proc. IEEE Globecom Workshops, Dec. 2018, pp. 1–6.
[12] Sarabjot Singh, Shu-ping Yeh, Nageen Himayat and Shilpa Talwar “Optimal Traffic Aggregation in Multi-RAT Heterogeneous Wireless Networks,” in IEEE International Conference on Communications Workshops, May 2016.
[13] Fei Hu, Kunal Mehta, Shivakant Mishra and Mohammad AlMutawa “A Dynamic Distributed Scheduler for Computing,” arXiv:2308.06806 [cs.DC], 2023.
[14] R. P. Antonioli, J. Pettersson, and T. F. Maciel, “Split responsibility scheduler for multi-connectivity in 5G cellular networks,” IEEE Netw., vol. 34, no. 6, pp. 212–219, Nov./Dec. 2020.
[15] OpenAirInterface5G, Gitlab Open Source, https://gitlab.eurecom.fr/oai/openairinterface5g
[16] Robert Schmidt, “Slicing in heterogeneous software-defined radio access networks,” Networking and Internet Architecture [cs.NI]. Sorbonne Université, 2021. English, NNT: 2021SORUS525, tel- 03783488.
[17] Ettus Research, USRP B210, https://www.ettus.com/all-products/ub210-kit/
[18] K. Koutlia, B. Bojovic, S. Lag´en, X. Zhang, P. Wang, and J. Liu,“System analysis of qos schedulers for xr traffic in 5g nr,” SimulationModelling Practice and Theory, vol. 125, p. 102745, 2023.
指導教授 許獻聰(Shiann-Tsong Sheu) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明