博碩士論文 111523069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.116.230.40
姓名 邱睿祺(Jui-Chi Chiu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於Q學習之低軌道衛星通訊無人機中繼中斷分析與軌跡優化設計
(Outage Analysis and Trajectory Design for UAV Relaying over LEO Satellite Communications via Q-Learning)
相關論文
★ 基於干擾對齊方法於多用戶多天線下之聯合預編碼器及解碼器設計★ 應用壓縮感測技術於正交分頻多工系統之稀疏多路徑通道追蹤與通道估計方法
★ 應用於行動LTE 上鏈SC-FDMA 系統之通道等化與資源分配演算法★ 以因子圖為基礎之感知無線電系統稀疏頻譜偵測
★ Sparse Spectrum Detection with Sub-blocks Partition for Cognitive Radio Systems★ 中繼網路於多路徑通道環境下基於領航信號的通道估測方法研究
★ 基於代價賽局在裝置對裝置間通訊下之資源分配與使用者劃分★ 應用於多用戶雙向中繼網路之聯合預編碼器及訊號對齊與天線選擇研究
★ 多用戶波束成型和機會式排程於透明階層式蜂巢式系統★ 應用於能量採集中繼網路之最佳傳輸策略研究設計及模擬
★ 感知無線電中繼網路下使用能量採集的傳輸策略之設計與模擬★ 以綠能為觀點的感知無線電下最佳傳輸策略的設計與模擬
★ 二使用者於能量採集網路架構之合作式傳輸策略設計及模擬★ 基於Q-Learning之雙向能量採集通訊傳輸方法設計與模擬
★ 多輸入多輸出下同時訊息及能量傳輸系統之設計與模擬★ 附無線充電裝置間通訊於蜂巢式系統之設計與模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 低軌衛星位於距地表約200至2000公里的軌道上,其快速運行和廣泛覆蓋
使其在第六代行動通訊和數據傳輸中扮演關鍵角色。然由於低軌衛星覆蓋的時間
和範圍有限,也易受到周遭環境遮蔽,地面用戶可能會遇到訊號中斷或品質不穩
定的情況,因此需要尋求輔助方法來提升通訊效果。在本文的研究成果中,吾人
以多無人機的機動性作為行動中繼站來改善低軌衛星與地面用戶之間的訊號品
質,無人機可以快速部署並靈活調整位置,以確保訊號覆蓋的連續性和穩定性。
吾人採用解碼轉遞中繼策略應用在包括多台無人機的無人機群上,地面用戶可以
直接接收到來自低軌衛星或無人機中繼低軌衛星的訊號,利用選擇多樣性方法以
提高地面用戶訊號品質。吾人建立了太空-空中-地面的三維的無人機群中繼通訊
模型,並且理論分析多無人機各項系統參數對於低軌衛星服務地面用戶通訊效能
的影響及效能提升的幅度,同時以電腦模擬驗證無人機群的解碼轉遞中繼策略之
系統效能,研究成果顯示無人機作為低軌衛星之行動中繼站,能有效改善地面用
戶通訊品質,為第六代通訊技術的發展提供了一個具有前景的解決方案。
摘要(英) Low Earth Orbit (LEO) satellites, positioned approximately 200 to 2000
kilometers above the Earth′s surface, play a critical role in sixth-generation (6G) mobile
communications and data transmission due to their fast orbiting speeds and wide
coverage. However, the limited coverage time and range of LEO satellites, along with
potential environmental obstructions, can lead to communication outage or unstable
quality for ground users. It thus necessitates auxiliary methods to enhance LEO
communication performance. We utilized the mobility of multiple unmanned aerial
vehicles (UAVs) as mobile relay stations to improve the signal quality between an LEO
satellite and a ground user. UAVs can be rapidly deployed and flexibly adjusted to
ensure continuous and stable signal coverage. We employed a decode-and-forward (DF)
relay strategy for a swarm of UAVs, allowing the ground user to receive signals directly
from the LEO satellite or via UAV relays, utilizing selection diversity to improve signal
quality. We established a three-dimensional space-air-ground communication model
for the UAV swarm and theoretically analyzed the impact of various network
parameters of multiple UAVs on the communication performance of the LEO satellite
serving ground users and the extent of performance improvement. Computer
simulations were conducted to verify the system performance of the DF relay strategy
of the UAV swarm. The research results indicated that UAVs as mobile relay stations
for LEO satellites can effectively enhance ground user communication quality,
providing a promising solution for the development of 6G communication technology.
關鍵字(中) ★ 低軌衛星
★ 第六代行動通訊
★ 無人機
★ 解碼轉遞中繼
★ 中斷機率
關鍵字(英)
論文目次 摘要 ................................................................................................................................ i
Abstract ......................................................................................................................... ii
致謝 .............................................................................................................................. iii
圖目錄 ........................................................................................................................... v
表目錄 .......................................................................................................................... vi
第一章 緒論 ................................................................................................................. 1
第二章 背景理論介紹 ................................................................................................. 4
第三章 低軌衛星通訊之無人機中繼中斷分析 ......................................................... 7
第四章 基於Q學習之低軌衛星通訊無人機中繼中斷分析與軌跡優化設計 ....... 18
第五章 電腦模擬結果 ............................................................................................... 23
第六章 結論 ............................................................................................................... 35
參考文獻 ..................................................................................................................... 36
參考文獻 [1] P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G Wireless Communications: Vision and
Potential Techniques,” IEEE Netw., vol. 33, no. 4, pp. 70-75, Jul./Aug. 2019.
[2] C. Liu, W. Feng, Y. Chen, C.-X. Wang, and N. Ge, ‘‘Cell-free Satellite UAV
Networks for 6G Wide-area Internet of Things,’’ IEEE J. Sel. Areas Commun., Aug.
24, 2020.
[3] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the Sky: A Tutorial on UAV
Communications for 5G and Beyond,” Proc. IEEE, vol. 107, no. 12, pp. 2327
2375, Dec. 2019.
[4] US Department of Transportation, “Unmanned Aircraft System (UAS) Service
Demand 2015–2035: Literature Review & Projections of Future Usage,” Tech.
Rep., v.0.1, DOT-VNTSC-DoD-13-01, Sep. 2013.
[5] P.K. Sharma, D. Deepthi and D. I. Kim, “Outage Probability of 3-D Mobile UAV
Relaying for Hybrid Satellite-Terrestrial Networks”, IEEE Commun. Lett., vol. 24,
pp. 418-422, 2020.
[6] Y. Wang, Z. Li, Y. Chen, M. Liu, X. Lyu, X. Hou, and J. Wang “Joint Resource
Allocation and UAV Trajectory Optimization for Space-air-ground Internet of
Remote Things Networks” IEEE Sys. J., vol. 15, no. 4, pp. 4745-4755, Sep. 2020.
[7] Y. Shi, Y. Xia, and Y. Gao, “Joint Gateway Selection and Resource Allocation for
Cross-Tier Communication in Space-Air-Ground Integrated IoT Networks,” IEEE
Access, vol. 9, pp. 4303-4314, 2021.
[8] Q. Huang, M. Lin, W.-P. Zhu, J. Cheng, and M.-S. Alouini, “Uplink Massive
Access in Mixed RF/FSO Satellite-aerial-terrestrial Networks,” IEEE Trans.
Commun., vol. 69, no. 4, pp. 2413-2426, Arp. 2021.
[9] ] C. Liu, W. Feng, Y. Chen, C.-X. Wang, and N. Ge, ‘‘Cell-free Satellite UAV
Networks for 6G Wide-area Internet of Things,’’ IEEE J. Sel. Areas Commun., Aug.
24, 2020.
[10] Z. Lin, M. Lin, B. Champagne, W.-P. Zhu, and N. A.-Dhahir “Robust Hybrid
Beamforming for Satellite Terrestrial Integrated Networks” in Proc. IEEE ICASSP,
pp. 8792-8796, 2020.
[11] P. K. Sharma and D. Gupta, “Outage Performance of multiUAV Relaying-based
Imperfect Hardware Hybrid Satellite-terrestrial Networks,” IEEE Syst. J., vol. 16,
36
no. 2, pp. 2311–2314, Jun. 2022.
[12] A. Abdi, W. Lau, M.-S. Alouini, and M. Kaveh, “A New Simple Model for Land
Mobile Satellite Channels: First- and Second-order Statistics,” IEEE Trans.
Wireless Commun., vol. 2, no. 3, pp. 519–528, May 2003.
[13] R. Yuan, T. Zhang, J. Huang, J. Zhang, and Z. Feng, “Performance Analysis of
Opportunistic Cooperative Communication over Nakagami-m Fading Channels,”
in Proc. IEEE WCNIS, pp. 49-53, 2010.
[14] R. Amorim, H. Nguyen, P. Mogensen, I. Z. Kovacs, J. Wigard, and T. B. Sorensen,
“Radio Channel Modeling for UAV Communication over Cellular Networks,”
IEEE Wireless Commun. Lett., vol. 6, no. 4, pp. 514–517, Aug. 2017.
[15] P. K. Sharma, P. K. Upadhyay, D. B. d. Costa, P. S. Bithas, and A. G. Kanatas,
“Performance Analysis of Overlay Spectrum Sharing in Hybrid Satellite-terrestrial
Systems with Secondary Network Selection,” IEEE Trans. Wireless Commun., vol.
16, no. 10, pp. 6586–6601, Oct. 2017.
[16] V. V. Chetlur and H. S. Dhillon, “Downlink Coverage Analysis for a Finite 3-D
Wireless Network of Unmanned Aerial Vehicles,” IEEE Trans. Commun., vol. 65,
no. 10, pp. 4543–4558, Oct. 2017.
指導教授 古孟霖(Meng-Lin Ku) 審核日期 2024-12-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明