參考文獻 |
[1] D. Bahri, H. Jiang, Y. Tay, and D. Metzler, “Scarf: Self-supervised contrastive
learning using random feature corruption,” arXiv preprint arXiv:2106.15147, 2021.
[2] Y. Gorishniy, I. Rubachev, and A. Babenko, “On embeddings for numerical features
in tabular deep learning,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24 991–25 004, 2022.
[3] T. Yao, X. Yi, D. Z. Cheng, et al., “Self-supervised learning for large-scale item
recommendations,” in Proceedings of the 30th ACM international conference on
information & knowledge management, 2021, pp. 4321–4330.
[4] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin, “Unsupervised feature learning via nonparametric instance discrimination,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 3733–3742.
[5] S. Purushwalkam and A. Gupta, “Demystifying contrastive self-supervised learning:
Invariances, augmentations and dataset biases,” Advances in Neural Information
Processing Systems, vol. 33, pp. 3407–3418, 2020.
[6] R. Gontijo-Lopes, S. J. Smullin, E. D. Cubuk, and E. Dyer, “Affinity and diversity:
Quantifying mechanisms of data augmentation,” arXiv preprint arXiv:2002.08973,
2020.
[7] R. G. Lopes, D. Yin, B. Poole, J. Gilmer, and E. D. Cubuk, “Improving robustness
without sacrificing accuracy with patch gaussian augmentation,” arXiv preprint
arXiv:1906.02611, 2019.
[8] L. Perez and J. Wang, “The effectiveness of data augmentation in image classification using deep learning,” arXiv preprint arXiv:1712.04621, 2017.
[9] D. S. Park, W. Chan, Y. Zhang, et al., “Specaugment: A simple data augmentation
method for automatic speech recognition,” arXiv preprint arXiv:1904.08779, 2019.
[10] A. J. Ratner, H. Ehrenberg, Z. Hussain, J. Dunnmon, and C. Ré, “Learning to compose domain-specific transformations for data augmentation,” Advances in neural
information processing systems, vol. 30, 2017.
32
[11] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical automated
data augmentation with a reduced search space,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, 2020, pp. 702–
703.
[12] D. Ho, E. Liang, X. Chen, I. Stoica, and P. Abbeel, “Population based augmentation: Efficient learning of augmentation policy schedules,” in International conference on machine learning, PMLR, 2019, pp. 2731–2741.
[13] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim, “Fast autoaugment,” Advances in
neural information processing systems, vol. 32, 2019.
[14] X. Zhang, Q. Wang, J. Zhang, and Z. Zhong, “Adversarial autoaugment,” arXiv
preprint arXiv:1912.11188, 2019.
[15] T. Tran, T. Pham, G. Carneiro, L. Palmer, and I. Reid, “A bayesian data augmentation approach for learning deep models,” Advances in neural information
processing systems, vol. 30, 2017.
[16] A. Tamkin, M. Wu, and N. Goodman, “Viewmaker networks: Learning views for
unsupervised representation learning,” arXiv preprint arXiv:2010.07432, 2020.
[17] J. Yoon, Y. Zhang, J. Jordon, and M. Van der Schaar, “Vime: Extending the
success of self-and semi-supervised learning to tabular domain,” Advances in Neural
Information Processing Systems, vol. 33, pp. 11 033–11 043, 2020.
[18] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual representations,” in International conference on machine
learning, PMLR, 2020, pp. 1597–1607.
[19] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An image is worth 16x16 words:
Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929,
2020.
[20] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Advances
in neural information processing systems, vol. 30, 2017.
[21] Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, “Revisiting deep learning
models for tabular data,” Advances in Neural Information Processing Systems,
vol. 34, pp. 18 932–18 943, 2021.
[22] X. Huang, A. Khetan, M. Cvitkovic, and Z. Karnin, “Tabtransformer: Tabular data
modeling using contextual embeddings,” arXiv preprint arXiv:2012.06678, 2020.
[23] J. Kossen, N. Band, C. Lyle, A. N. Gomez, T. Rainforth, and Y. Gal, “Self-attention
between datapoints: Going beyond individual input-output pairs in deep learning,”
Advances in Neural Information Processing Systems, vol. 34, pp. 28 742–28 756,
2021.
33
參考文獻
[24] G. Somepalli, M. Goldblum, A. Schwarzschild, C. B. Bruss, and T. Goldstein,
“Saint: Improved neural networks for tabular data via row attention and contrastive
pre-training,” arXiv preprint arXiv:2106.01342, 2021.
[25] N. Rahaman, A. Baratin, D. Arpit, et al., “On the spectral bias of neural networks,”
in International conference on machine learning, PMLR, 2019, pp. 5301–5310.
[26] M. Tancik, P. Srinivasan, B. Mildenhall, et al., “Fourier features let networks learn
high frequency functions in low dimensional domains,” Advances in neural information processing systems, vol. 33, pp. 7537–7547, 2020.
[27] Y. Li, S. Si, G. Li, C.-J. Hsieh, and S. Bengio, “Learnable fourier features for
multi-dimensional spatial positional encoding,” Advances in Neural Information
Processing Systems, vol. 34, pp. 15 816–15 829, 2021.
[28] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, “Implicit neural
representations with periodic activation functions,” Advances in neural information
processing systems, vol. 33, pp. 7462–7473, 2020.
[29] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and
R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,”
Communications of the ACM, vol. 65, no. 1, pp. 99–106, 2021.
[30] B. Bischl, G. Casalicchio, M. Feurer, et al., “Openml benchmarking suites,” arXiv:1708.03731v2
[stat.ML], 2019. |