參考文獻 |
參考文獻
[1] Statista, “Global internet user penetration 2021 | Statista,” Statista, 2024. https://www.statista.com/statistics/325706/global-internet-user-penetration/
[2] Z. Balani and Mohammed Nasseh Mohammed, “Enhancing Cybersecurity against Stuxnet in the Future of Cyberwarfare: A Combined Approach Using Firewalls and Intrusion Detection Systems,” International Journal of Science and Business, vol. 28, no. 1, pp. 21–30, Jan. 2023, doi: https://doi.org/10.58970/ijsb.2202
[3] R. Khader and D. Eleyan, “Survey of DoS/DDoS attacks in IoT,” Sustainable Engineering and Innovation, vol. 3, no. 1, pp. 23–28, Jan. 2021, doi: https://doi.org/10.37868/sei.v3i1.124
[4] T. AdebayoO, K. AleseB, and J. Gabriela, “A Model for Computer Worm Detection in a Computer Network,” International Journal of Computer Applications, Mar. 2013, Accessed: Jun. 27, 2024. [Online]. Available: https://www.semanticscholar.org/paper/A-Model-for-Computer-Worm-Detection-in-a-Computer-AdebayoO.-AleseB./846f0891575e962638684ce9312c54abda223eeb
[5] M. Yu, T. Xie, T. He, P. McDaniel, and Q. K. Burke, “Flow Table Security in SDN: Adversarial Reconnaissance and Intelligent Attacks,” IEEE/ACM Transactions on Networking, vol. 29, no. 6, pp. 2793–2806, Dec. 2021, doi: https://doi.org/10.1109/tnet.2021.3099717
[6] A. Borkar, A. Donode, and A. Kumari, “A survey on Intrusion Detection System (IDS) and Internal Intrusion Detection and protection system (IIDPS),” IEEE Xplore, Nov. 01, 2017. https://ieeexplore.ieee.org/document/8365277
[7] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, no. 61, pp. 85–117, Jan. 2015, doi: https://arxiv.org/abs/1404.7828
[8] I. Stellios, P. Kotzanikolaou, M. Psarakis, C. Alcaraz, and J. Lopez, “A Survey of IoT-Enabled Cyberattacks: Assessing Attack Paths to Critical Infrastructures and Services,” IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3453–3495, 2018, doi: https://doi.org/10.1109/comst.2018.2855563
[9] C. O. S. Sorzano, J. Vargas, and A. P. Montano, “A survey of dimensionality reduction techniques,” arXiv:1403.2877 [cs, q-bio, stat], Mar. 2014, Available: https://doi.org/10.48550/arXiv.1403.2877
[10] A. Vaswani et al., “Attention Is All You Need,” arXiv.org, Jun. 12, 2017. https://arxiv.org/abs/1706.03762
[11] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,” arXiv:1511.08458 [cs], Dec. 2015, Available: https://arxiv.org/abs/1511.08458
[12] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition,” arXiv.org, 2014. https://arxiv.org/abs/1402.1128
[13] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A Survey of Transformers,” arXiv:2106.04554 [cs], Jun. 2021, Available: https://arxiv.org/abs/2106.04554
[14] “network based intrusion detection system - an overview | ScienceDirect Topics,” Sciencedirect.com, 2011.https://www.sciencedirect.com/topics/computer-science/network-based-intrusion-detection-system
[15] Hami Satilmiş, Sedat Akleylek, and Zaliha Yüce Tok, “A Systematic Literature Review on Host-Based Intrusion Detection Systems,” IEEE access, pp. 1–1, Jan. 2024, doi: https://doi.org/10.1109/access.2024.3367004
[16] “Network packet,” Wikipedia, Nov. 10, 2019. https://en.wikipedia.org/wiki/Network_packet
[17] “Traffic flow (computer networking),” Wikipedia, Mar. 30, 2021. https://en.wikipedia.org/wiki/Traffic_flow_(computer_networking)
[18] J. Shlens, “A Tutorial on Principal Component Analysis,” arXiv:1404.1100 [cs, stat], Apr. 2014, Available: https://arxiv.org/abs/1404.1100
[19] “Papers with Code - LDA Explained,” paperswithcode.com. https://paperswithcode.com/method/lda
[20] N. Gillis, “The Why and How of Nonnegative Matrix Factorization,” arXiv:1401.5226 [cs, math, stat], Mar. 2014, Available: https://arxiv.org/abs/1401.5226
[21] Umberto Michelucci, “An Introduction to Autoencoders,” arXiv (Cornell University), Jan. 2022, doi: https://arxiv.org/abs/2201.03898
[22] R. Patil, S. Boit, V. Gudivada, and J. Nandigam, “A Survey of Text Representation and Embedding Techniques in NLP,” IEEE Access, vol. 11, pp. 36120–36146, 2023, doi: https://doi.org/10.1109/access.2023.3266377
[23] Z. Wu, H. Zhang, P. Wang, and Z. Sun, “RTIDS: A Robust Transformer-Based Approach for Intrusion Detection System,” IEEE Access, vol. 10, pp. 64375–64387, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3182333
[24] J. Lam and R. Abbas, “Machine Learning based Anomaly Detection for 5G Networks,” arXiv:2003.03474 [cs, stat], Mar. 2020, Available: https://arxiv.org/abs/2003.03474
[25] H. Wang and W. Li, “DDosTC: A Transformer-Based Network Attack Detection Hybrid Mechanism in SDN,” Sensors, vol. 21, no. 15, p. 5047, Jan. 2021, doi: https://doi.org/10.3390/s21155047
[26] M. Zeeshan et al., “Protocol Based Deep Intrusion Detection for DoS and DDoS attacks using UNSW-NB15 and Bot-IoT data-sets,” IEEE Access, pp. 1–1, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3137201
[27] C.-W. Wu, "A Study of Malicious Network Traffic Detection Based on Graph Neural Network and Using eXplainable Artificial Intelligence to Optimize Model," M.S. thesis, Dept. Comput. Sci. Inf. Eng., National Central University, supervised by L.-D. Chou, 2022, Accessed on June 7, 2024. [Online]. Available: https://hdl.handle.net/11296/vvmm4v
[28] L.-D. Chou, "Deep Learning-Based Malicious Traffic Detection and Defense Using Raspberry Pi," Project Technical Report, Dept. Comput. Sci. Inf. Eng., National Central University, 2022.
[29] “DDoS 2019 | Datasets | Research | Canadian Institute for Cybersecurity | UNB,” www.unb.ca. https://www.unb.ca/cic/datasets/ddos-2019.html
[30] “IDS 2017 | Datasets | Research | Canadian Institute for Cybersecurity | UNB,” Www.unb.ca, 2017. https://www.unb.ca/cic/datasets/ids-2017.html
[31] “Port Scanning Attack,” GeeksforGeeks, Sep. 06, 2022. https://www.geeksforgeeks.org/port-scanning-attack/
[32] “Brute-force attack,” Wikipedia, Feb. 23, 2020. https://en.wikipedia.org/wiki/Brute-force_attack
[33] “Cross-site scripting,” Wikipedia, Jul. 25, 2019 https://en.wikipedia.org/wiki/Cross-site_scripting
[34] “The UNSW-NB15 Dataset | UNSW Research,” research.unsw.edu.au. https://research.unsw.edu.au/projects/unsw-nb15-dataset
[35] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the Development of Realistic Botnet Dataset in the Internet of Things for Network Forensic Analytics: Bot-IoT Dataset,” arXiv (Cornell University), Nov. 2018, doi: https://arxiv.org/abs/1811.00701
[36] “Gradient-based learning applied to document recognition - IEEE Journals & Magazine,” Ieee.org, 2019. http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
[37] S. Abirami and P. Chitra, “Multilayer Perceptron - an overview | ScienceDirect Topics,” www.sciencedirect.com, 2020. https://www.sciencedirect.com/topics/computer-science/multilayer-perceptron
[38] Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures,” Neural Computation, vol. 31, no. 7, pp. 1235–1270, Jul. 2019, doi: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
[39] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini, “The Graph Neural Network Model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, Jan. 2009, doi: https://ieeexplore.ieee.org/document/4700287
[40] “Raspberry Pi,” Wikipedia, Feb. 07, 2019. https://en.wikipedia.org/wiki/Raspberry_Pi
[41] I. Ahmed, G. Jeon, and F. Piccialli, “From Artificial Intelligence to eXplainable Artificial Intelligence in Industry 4.0: A survey on What, How, and Where,” IEEE Transactions on Industrial Informatics, vol. 18, no. 8, pp. 1–1, 2022, doi: https://doi.org/10.1109/tii.2022.3146552
[42] “Cryptanalysis,” Wikipedia, Aug. 21, 2019. https://en.wikipedia.org/wiki/Cryptanalysis
[43] S. Ni, X. Wang, Y. Shang, and L. Zhang, “Natural and Imperceptible Backdoor Attack against Deep Neural Networks,” May 2023, doi: https://doi.org/10.1109/icecai58670.2023.10176925
[44] Scikit-learn, “sklearn.preprocessing.OneHotEncoder — scikit-learn 0.22 documentation,” Scikit-learn.org, 2019. https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
[45] Scikit-Learn, “sklearn.preprocessing.StandardScaler — scikit-learn 0.21.2 documentation,” Scikit-learn.org, 2019. https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv.org, Dec. 10, 2015. https://arxiv.org/abs/1512.03385
[47] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer Normalization,” arXiv:1607.06450 [cs, stat], Jul. 2016, Available: https://arxiv.org/abs/1607.06450
[48] “Softmax — PyTorch 2.1 documentation,” pytorch.org. https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html
[49] E. W. Weisstein, “Skewness,” mathworld.wolfram.com. http://mathworld.wolfram.com/Skewness.html
[50] “Curse of dimensionality,” Wikipedia, Dec. 08, 2019. https://en.wikipedia.org/wiki/Curse_of_dimensionality
[51] “Mean squared error,” Wikipedia, Mar. 30, 2019. https://en.wikipedia.org/wiki/Mean_squared_error
[52] M. A. Mercioni and S. Holban, “The Most Used Activation Functions: Classic Versus Current,” 2020 International Conference on Development and Application Systems (DAS), May 2020, doi: https://doi.org/10.1109/das49615.2020.9108942
[53] J. Brownlee, “A Gentle Introduction to the Rectified Linear Unit (ReLU) for Deep Learning Neural Networks,” Machine Learning Mastery, Apr. 20, 2019. https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
[54] “NumPy — NumPy,” Numpy.org, 2009. http://www.numpy.org/
[55] “pandas documentation — pandas 1.0.1 documentation,” pandas.pydata.org, 2024. https://pandas.pydata.org/docs/
[56] “scikit-learn: machine learning in Python,” Scikit-learn.org, 2019.
https://scikit-learn.org/stable/
[57] “Home - Keras Documentation,” Keras.io, 2019. https://keras.io
[58] Oracle.com, 2024. https://developer.oracle.com/zh-TW/learn/technical-articles/what-is-tensorflow
[59] Z. Hu, J. Zhang, and Y. Ge, “Handling Vanishing Gradient Problem Using Artificial Derivative,” IEEE Access, vol. 9, pp. 22371–22377, 2021, doi: https://doi.org/10.1109/access.2021.3054915
[60] J. Xu, Z. Li, B. Du, M. Zhang, and J. Liu, “Reluplex made more practical: Leaky ReLU,” 2020 IEEE Symposium on Computers and Communications (ISCC), Jul. 2020, doi: https://doi.org/10.1109/iscc50000.2020.9219587
[61] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs),” arXiv.org, 2015.
https://arxiv.org/abs/1511.07289
[62] “Gated recurrent unit,” Wikipedia, Feb. 18, 2019. https://en.wikipedia.org/wiki/Gated_recurrent_unit
[63] “Cost-Effective Retraining of Machine Learning Models,” ar5iv, 2024. https://ar5iv.labs.arxiv.org/html/2310.04216 (accessed Aug. 09, 2024).
L. Lyu, Y. Shen, and S. Zhang, “The Advance of Reinforcement Learning and Deep Reinforcement Learning,” 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Feb. 2022, doi: https://doi.org/10.1109/eebda53927.2022.9744760 |