博碩士論文 111626002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.145.163.13
姓名 張德全(De-Cyuan Chang)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 桃園臺地熱舒適度研究:觀測與氣候變遷分析
相關論文
★ 以禁忌演算法推估流域空間降雨★ 氣候變遷對台灣地區地表水文量之影響
★ 分散式降雨逕流模式之建立及暴雨時期流量之模擬★ 翡翠水庫集水區水文分析
★ 地表過程蒸發散之觀測與分析★ 桃園地區人工埤池對水資源輔助之分析研究
★ 地表過程質傳與熱傳數值模擬★ 桃園灌區之區域迴歸水分析研究
★ 地表通量觀測與分析★ 氣候變遷對水庫集水區入流量之衝擊評估-以石門水庫集水區為例
★ 應用通量變異法與渦流相關法推估地表通量★ 改良GWLF模式應用於翡翠水庫入流量模擬
★ 淡水河流域水文時空變異分析★ 應用土壤水分變化推估常綠闊葉林蒸發散量
★ 生地化反應數值模式 – BIOGEOCHEM 互動式圖形使用者介面的開發與應用★ 結合季長期天氣預報與水文模式推估石門水庫入流量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-21以後開放)
摘要(中) 本研究以桃園臺地為研究區域,探討氣候變遷與土地利用變化對熱舒適度的影響。本研究透過歷史數據分析、實地觀測與未來氣候變遷情境模擬,包含三個部分:(1) 於中大校園進行實地觀測,計算不同鋪面條件的生理等效溫度 (Physiological Equivalent Temperature, PET),評估遮蔽對熱舒適度的改善效益、白天及夜晚影響PET之主要因素;(2) 分析桃園臺地1993至2022年間PET歷史變化,結合土地利用變遷與人口變化之分群分析,評估土地利用變遷及人口變化對PET之影響;(3) 使用未來氣候變遷情境,推估桃園臺地及不同鋪面類型的PET變化趨勢。
  研究結果顯示,白天PET主要受黑球溫度影響,夜晚則以風速為主;歷史數據分析顯示,桃園臺地的PET上升與不透水鋪面增加和人口增長高度相關,其中,不透水鋪面增加的影響尤為顯著。未來氣候變遷模擬顯示,所有情境下桃園臺地熱舒適度均呈現上升趨勢,高排放情境可能達到「非常熱」的等級。透過此研究希望能提供未來改善熱舒適的調適提供參考。
摘要(英) This study focuses on the Taoyuan Plateau, investigating the impacts of climate change, land use changes, and population growth on thermal comfort. Through historical data analysis, field observations, and future climate change scenario simulations, this study contains three parts: (1) In-situ observations at the National Central University campus to calculate Physiological Equivalent Temperature (PET) under different pavement conditions, evaluating the benefits of shading on thermal comfort and identifying key factors affecting PET values during the day and night; (2) Analyzing PET changes of the Taoyuan Plateau from 1993 to 2022 in association with changes of land use and population by different clusters to assess their influence on PET values; (3) Calculating projections of PET trends for the Taoyuan Plateau and various pavement types under future climate change scenarios.
  The results reveal that daytime PET is primarily affected by mean radiant temperature, while nighttime PET is highly related to wind speed. Historical data of the Taoyuan Plateau show a strong correlation between rising PET and increases in impervious surfaces and population, with impervious surfaces having a particularly significant impact. Future simulations indicate an upward trend in thermal discomfort across all scenarios, with high-emission scenarios potentially reaching "very hot" levels. This research aims to provide scientific information to support the development of thermal comfort adaptation.
Keywords: Thermal comfort, Physiologically Equivalent Temperature, Climate Change, Urban Heat Island Effect
關鍵字(中) ★ 人體熱舒適度
★ 生理等效溫度
★ 氣候變遷
★ 都市熱島效應
關鍵字(英) ★ Thermal comfort
★ Physiologically Equivalent Temperature
★ Climate Change
★ Urban Heat Island Effect
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 論文架構 2
第二章 文獻回顧 3
2.1 氣候變遷下極端高溫與衝擊 3
2.2 土地利用與熱島效應 5
2.3 環境與熱舒適 7
2.4 熱舒適指標 8
第三章 研究區域與資料蒐集 10
3.1 桃園臺地 10
3.2 中大校園 12
第四章 研究方法 18
4.1 分析流程 18
4.2 PET計算方式 19
4.2.1 Pythermalcomfort套件 19
4.2.2 PET預測式 27
4.3 關鍵因子分析 28
4.4 分群分析 29
4.5 未來熱舒適度推估 30
第五章 結果與討論 32
5.1 中大校園觀測成果 32
5.1.1 水體 32
5.1.2 草地 35
5.1.3 不透水鋪面 37
5.1.4 屋頂 41
5.2 桃園臺地歷史熱舒適度變遷分析 44
5.2.1 桃園臺地PET歷史變遷 44
5.2.2 臺地土地利用歷史變遷 45
5.2.3 綜合排名法分群分析成果 46
5.2.4 網格分類法分群分析成果 47
5.3 未來熱舒適度評估 49
5.3.1 桃園臺地未來熱舒適度評估成果 49
5.3.2 不同鋪面環境未來熱舒適度評估成果 49
第六章 結論與建議 51
6.1 結論 51
6.2 建議 51
參考文獻 53
附件一、活動代謝率及著衣量參考表 58
附件二、PET計算之預設值參數表 60
附件三、中大校園觀測氣象參數日循環圖 61
附件四、桃園臺地歷史PET分佈圖 69
附件五、桃園臺地土地利用成果 77
附件六、不同鋪面環境下之PET未來推估 79
參考文獻 Blagden, C. (1775). XII. Experiments and observations in an heated room. Philosophical transactions of the Royal Society of London(65), 111-123.
Boregowda, S. C., Choate, R. E., & Handy, R. (2012). Entropy Generation Analysis of Human Thermal Stress Responses. International Scholarly Research Notices, 2012(1), 830103. https://doi.org/https://doi.org/10.5402/2012/830103
Broede, P., Blazejczyk, K., Fiala, D., Havenith, G., Holmer, I., Jendritzky, G., Kuklane, K., & Kampmann, B. (2013). The Universal Thermal Climate Index UTCI compared to ergonomics standards for assessing the thermal environment. Industrial health, 51(1), 16-24.
Budd, G. M. (2008). Wet-bulb globe temperature (WBGT)—its history and its limitations. Journal of Science and Medicine in Sport, 11(1), 20-32. https://doi.org/https://doi.org/10.1016/j.jsams.2007.07.003
C3S. (2025). Copernicus: 2024 is the first year to exceed 1.5°C above pre-industrial level. Copernicus Climate Change Service, C3S. https://climate.copernicus.eu/copernicus-2024-first-year-exceed-15degc-above-pre-industrial-level?fbclid=IwY2xjawH5zJdleHRuA2FlbQIxMAABHXzoIkCq1oEHLYdnhVTc6kTbcgus456APTJjDKZw0New-f1c6attxFFbRg_aem_v_o5RqN5ISH9r79V1blWYg
Fanger, P. (1970). Thermal Comfort: Analysis and Applications in Environmental Engineering. In: Danish Technical Press.
Hoppe, P. (1999). The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71-75. https://doi.org/10.1007/s004840050118
Hoppe, P. R. (1993). Heat balance modelling. Experientia, 49, 741-746.
He, J. F., Liu, J. Y., Zhuang, D. F., Zhang, W., & Liu, M. L. (2007). Assessing the effect of land use/land cover change on the change of urban heat island intensity. Theoretical and Applied Climatology, 90(3), 217-226. https://doi.org/10.1007/s00704-006-0273-1
Howard, L. (1833). The climate of London: deduced from meteorological observations made in the metropolis and at various places around it (Vol. 3). Harvey and Darton, J. and A. Arch, Longman, Hatchard, S. Highley [and] R. Hunter.
Jeffry, L., Ong, M. Y., Nomanbhay, S., Mofijur, M., Mubashir, M., & Show, P. L. (2021). Greenhouse gases utilization: A review. Fuel, 301, 121017. https://doi.org/https://doi.org/10.1016/j.fuel.2021.121017
Kardinal Jusuf, S., Wong, N. H., Hagen, E., Anggoro, R., & Hong, Y. (2007). The influence of land use on the urban heat island in Singapore. Habitat International, 31(2), 232-242. https://doi.org/https://doi.org/10.1016/j.habitatint.2007.02.006
Karimi, A., Mohammad, P., Garcia-Martinez, A., Moreno-Rangel, D., Gachkar, D., & Gachkar, S. (2023). New developments and future challenges in reducing and controlling heat island effect in urban areas. Environment, Development and Sustainability, 25(10), 10485-10531. https://doi.org/10.1007/s10668-022-02530-0
Karimi, A., Sanaieian, H., Farhadi, H., & Norouzian-Maleki, S. (2020). Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports, 6, 1670-1684. https://doi.org/https://doi.org/10.1016/j.egyr.2020.06.015
Lee, J. S., Kim, J. T., & Lee, M. G. (2014). Mitigation of urban heat island effect and greenroofs. Indoor and Built Environment, 23(1), 62-69. https://doi.org/10.1177/1420326x12474483
Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84-87. https://doi.org/10.1038/nature16467
Lin, T.-P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology, 52(4), 281-290. https://doi.org/10.1007/s00484-007-0122-7
Lo, C., & Quattrochi, D. A. (2003). Land-use and land-cover change, urban heat island phenomenon, and health implications. Photogrammetric Engineering & Remote Sensing, 69(9), 1053-1063.
Luber, G., & McGeehin, M. (2008). Climate Change and Extreme Heat Events. American Journal of Preventive Medicine, 35(5), 429-435. https://doi.org/https://doi.org/10.1016/j.amepre.2008.08.021
Myrup, L. O. (1969). A Numerical Model of the Urban Heat Island. Journal of Applied Meteorology and Climatology, 8(6), 908-918. https://doi.org/https://doi.org/10.1175/1520-0450(1969)008<0908:ANMOTU>2.0.CO;2
NOAA. (2024). Climate at a Glance Global Time Series. National Oceanic and Atmospheric Administration, NOAA. https://www.ncei.noaa.gov/
Parente, J., Pereira, M. G., Amraoui, M., & Fischer, E. M. (2018). Heat waves in Portugal: Current regime, changes in future climate and impacts on extreme wildfires. Science of The Total Environment, 631-632, 534-549. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.03.044
Ripple, W. J., Wolf, C., Gregg, J. W., Rockstrom, J., Newsome, T. M., Law, B. E., Marques, L., Lenton, T. M., Xu, C., Huq, S., Simons, L., & King, S. D. A. (2023). The 2023 state of the climate report: Entering uncharted territory. BioScience, 73(12), 841-850. https://doi.org/10.1093/biosci/biad080
Samset, B. H., Lund, M. T., Fuglestvedt, J. S., & Wilcox, L. J. (2024). 2023 temperatures reflect steady global warming and internal sea surface temperature variability. Communications Earth & Environment, 5(1), 460. https://doi.org/10.1038/s43247-024-01637-8
Solomon, S., Daniel, J. S., Sanford, T. J., Murphy, D. M., Plattner, G.-K., Knutti, R., & Friedlingstein, P. (2010). Persistence of climate changes due to a range of greenhouse gases. Proceedings of the National Academy of Sciences, 107(43), 18354-18359. https://doi.org/doi:10.1073/pnas.1006282107
Steadman, R. G. (1979). The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. Journal of Applied Meteorology and Climatology, 18(7), 861-873. https://doi.org/https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2
Tartarini, F., Schiavon, S., Hoyt, T., & Mackey, C. (2024). pythermalcomfort. https://pythermalcomfort.readthedocs.io/en/latest/index.html
Walther, E., & Goestchel, Q. (2018). The P.E.T. comfort index: Questioning the model. Building and Environment, 137, 1-10. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.03.054
Wu, Z., & Zhang, Y. (2019). Water Bodies’ Cooling Effects on Urban Land Daytime Surface Temperature: Ecosystem Service Reducing Heat Island Effect. Sustainability, 11(3), 787. https://www.mdpi.com/2071-1050/11/3/787
Zhao, Q., Lian, Z., & Lai, D. (2021). Thermal comfort models and their developments: A review. Energy and Built Environment, 2(1), 21-33. https://doi.org/https://doi.org/10.1016/j.enbenv.2020.05.007
汪中安. (2022). 氣候與土地利用變遷情境下的都市熱島效應—以桃園市區為例 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/fr7k3t
林憲德, 陳冠廷, & 郭曉青. (2001). 台灣中型都市熱島現象與土地利用之觀測解析 [Experimental Analyses on the Urban Heat Island Effect for the Middle Scale Cities in Taiwan]. 規劃學報(28), 47-64. https://doi.org/10.6404/jp.200112.0047
孫振義. (2017). 熱季街道環境與熱舒適性關係之研究. 都市與計劃, 44(4), 375-397.
國立成功大學. (2023). 永續城鄉宜居環境 —臺中都市熱島效應空間策略計畫成果報告書 (民眾閱覽版). 臺中市政府都市發展局.
張志新, 于宜強, 王安翔, 王俞婷, 朱容練, 朱崇銳, 江申, 何瑞益, 吳秉儒, 呂喬茵, 李香潔, 李士強, 李宗融, 李威霖, 林又青, 林媺瑛, 林聖琪, 林睿宸, 林勁緯, . . . 魏曉萍. (2024). 2023天然災害紀實. 國家災害防救科技中心.
曾尉育. (2012). 土地覆蓋對都市熱島減緩效應之研究 -以台北市為例 中國文化大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/7a9y8k
楊倍航. (2013). 臺中市都市熱島效應發展變遷及影響因子之探討 逢甲大學]. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/59cbxd
指導教授 李明旭(Ming-Hsu Li) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明