參考文獻 |
Blagden, C. (1775). XII. Experiments and observations in an heated room. Philosophical transactions of the Royal Society of London(65), 111-123.
Boregowda, S. C., Choate, R. E., & Handy, R. (2012). Entropy Generation Analysis of Human Thermal Stress Responses. International Scholarly Research Notices, 2012(1), 830103. https://doi.org/https://doi.org/10.5402/2012/830103
Broede, P., Blazejczyk, K., Fiala, D., Havenith, G., Holmer, I., Jendritzky, G., Kuklane, K., & Kampmann, B. (2013). The Universal Thermal Climate Index UTCI compared to ergonomics standards for assessing the thermal environment. Industrial health, 51(1), 16-24.
Budd, G. M. (2008). Wet-bulb globe temperature (WBGT)—its history and its limitations. Journal of Science and Medicine in Sport, 11(1), 20-32. https://doi.org/https://doi.org/10.1016/j.jsams.2007.07.003
C3S. (2025). Copernicus: 2024 is the first year to exceed 1.5°C above pre-industrial level. Copernicus Climate Change Service, C3S. https://climate.copernicus.eu/copernicus-2024-first-year-exceed-15degc-above-pre-industrial-level?fbclid=IwY2xjawH5zJdleHRuA2FlbQIxMAABHXzoIkCq1oEHLYdnhVTc6kTbcgus456APTJjDKZw0New-f1c6attxFFbRg_aem_v_o5RqN5ISH9r79V1blWYg
Fanger, P. (1970). Thermal Comfort: Analysis and Applications in Environmental Engineering. In: Danish Technical Press.
Hoppe, P. (1999). The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2), 71-75. https://doi.org/10.1007/s004840050118
Hoppe, P. R. (1993). Heat balance modelling. Experientia, 49, 741-746.
He, J. F., Liu, J. Y., Zhuang, D. F., Zhang, W., & Liu, M. L. (2007). Assessing the effect of land use/land cover change on the change of urban heat island intensity. Theoretical and Applied Climatology, 90(3), 217-226. https://doi.org/10.1007/s00704-006-0273-1
Howard, L. (1833). The climate of London: deduced from meteorological observations made in the metropolis and at various places around it (Vol. 3). Harvey and Darton, J. and A. Arch, Longman, Hatchard, S. Highley [and] R. Hunter.
Jeffry, L., Ong, M. Y., Nomanbhay, S., Mofijur, M., Mubashir, M., & Show, P. L. (2021). Greenhouse gases utilization: A review. Fuel, 301, 121017. https://doi.org/https://doi.org/10.1016/j.fuel.2021.121017
Kardinal Jusuf, S., Wong, N. H., Hagen, E., Anggoro, R., & Hong, Y. (2007). The influence of land use on the urban heat island in Singapore. Habitat International, 31(2), 232-242. https://doi.org/https://doi.org/10.1016/j.habitatint.2007.02.006
Karimi, A., Mohammad, P., Garcia-Martinez, A., Moreno-Rangel, D., Gachkar, D., & Gachkar, S. (2023). New developments and future challenges in reducing and controlling heat island effect in urban areas. Environment, Development and Sustainability, 25(10), 10485-10531. https://doi.org/10.1007/s10668-022-02530-0
Karimi, A., Sanaieian, H., Farhadi, H., & Norouzian-Maleki, S. (2020). Evaluation of the thermal indices and thermal comfort improvement by different vegetation species and materials in a medium-sized urban park. Energy Reports, 6, 1670-1684. https://doi.org/https://doi.org/10.1016/j.egyr.2020.06.015
Lee, J. S., Kim, J. T., & Lee, M. G. (2014). Mitigation of urban heat island effect and greenroofs. Indoor and Built Environment, 23(1), 62-69. https://doi.org/10.1177/1420326x12474483
Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84-87. https://doi.org/10.1038/nature16467
Lin, T.-P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology, 52(4), 281-290. https://doi.org/10.1007/s00484-007-0122-7
Lo, C., & Quattrochi, D. A. (2003). Land-use and land-cover change, urban heat island phenomenon, and health implications. Photogrammetric Engineering & Remote Sensing, 69(9), 1053-1063.
Luber, G., & McGeehin, M. (2008). Climate Change and Extreme Heat Events. American Journal of Preventive Medicine, 35(5), 429-435. https://doi.org/https://doi.org/10.1016/j.amepre.2008.08.021
Myrup, L. O. (1969). A Numerical Model of the Urban Heat Island. Journal of Applied Meteorology and Climatology, 8(6), 908-918. https://doi.org/https://doi.org/10.1175/1520-0450(1969)008<0908:ANMOTU>2.0.CO;2
NOAA. (2024). Climate at a Glance Global Time Series. National Oceanic and Atmospheric Administration, NOAA. https://www.ncei.noaa.gov/
Parente, J., Pereira, M. G., Amraoui, M., & Fischer, E. M. (2018). Heat waves in Portugal: Current regime, changes in future climate and impacts on extreme wildfires. Science of The Total Environment, 631-632, 534-549. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.03.044
Ripple, W. J., Wolf, C., Gregg, J. W., Rockstrom, J., Newsome, T. M., Law, B. E., Marques, L., Lenton, T. M., Xu, C., Huq, S., Simons, L., & King, S. D. A. (2023). The 2023 state of the climate report: Entering uncharted territory. BioScience, 73(12), 841-850. https://doi.org/10.1093/biosci/biad080
Samset, B. H., Lund, M. T., Fuglestvedt, J. S., & Wilcox, L. J. (2024). 2023 temperatures reflect steady global warming and internal sea surface temperature variability. Communications Earth & Environment, 5(1), 460. https://doi.org/10.1038/s43247-024-01637-8
Solomon, S., Daniel, J. S., Sanford, T. J., Murphy, D. M., Plattner, G.-K., Knutti, R., & Friedlingstein, P. (2010). Persistence of climate changes due to a range of greenhouse gases. Proceedings of the National Academy of Sciences, 107(43), 18354-18359. https://doi.org/doi:10.1073/pnas.1006282107
Steadman, R. G. (1979). The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. Journal of Applied Meteorology and Climatology, 18(7), 861-873. https://doi.org/https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2
Tartarini, F., Schiavon, S., Hoyt, T., & Mackey, C. (2024). pythermalcomfort. https://pythermalcomfort.readthedocs.io/en/latest/index.html
Walther, E., & Goestchel, Q. (2018). The P.E.T. comfort index: Questioning the model. Building and Environment, 137, 1-10. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.03.054
Wu, Z., & Zhang, Y. (2019). Water Bodies’ Cooling Effects on Urban Land Daytime Surface Temperature: Ecosystem Service Reducing Heat Island Effect. Sustainability, 11(3), 787. https://www.mdpi.com/2071-1050/11/3/787
Zhao, Q., Lian, Z., & Lai, D. (2021). Thermal comfort models and their developments: A review. Energy and Built Environment, 2(1), 21-33. https://doi.org/https://doi.org/10.1016/j.enbenv.2020.05.007
汪中安. (2022). 氣候與土地利用變遷情境下的都市熱島效應—以桃園市區為例 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/fr7k3t
林憲德, 陳冠廷, & 郭曉青. (2001). 台灣中型都市熱島現象與土地利用之觀測解析 [Experimental Analyses on the Urban Heat Island Effect for the Middle Scale Cities in Taiwan]. 規劃學報(28), 47-64. https://doi.org/10.6404/jp.200112.0047
孫振義. (2017). 熱季街道環境與熱舒適性關係之研究. 都市與計劃, 44(4), 375-397.
國立成功大學. (2023). 永續城鄉宜居環境 —臺中都市熱島效應空間策略計畫成果報告書 (民眾閱覽版). 臺中市政府都市發展局.
張志新, 于宜強, 王安翔, 王俞婷, 朱容練, 朱崇銳, 江申, 何瑞益, 吳秉儒, 呂喬茵, 李香潔, 李士強, 李宗融, 李威霖, 林又青, 林媺瑛, 林聖琪, 林睿宸, 林勁緯, . . . 魏曉萍. (2024). 2023天然災害紀實. 國家災害防救科技中心.
曾尉育. (2012). 土地覆蓋對都市熱島減緩效應之研究 -以台北市為例 中國文化大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/7a9y8k
楊倍航. (2013). 臺中市都市熱島效應發展變遷及影響因子之探討 逢甲大學]. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/59cbxd |