博碩士論文 111821014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.145.86.142
姓名 洪以倢(Yi-Jie Hung)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 麩胺酸誘導阿拉伯芥的防禦反應與根毛伸長
(Glutamate induces defense response and root hair elongation in Arabidopsis)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 前人研究已證實,麩胺酸(Glu)作為初級氮同化的產物之一,能夠誘導植物防禦反應,但其具體機制尚未明確。本研究深入分析了Glu作為唯一氮源對阿拉伯芥生長發育及免疫反應的影響。我們發現,當Glu作為唯一氮源時,顯著抑制了主根生長,同時促進側根延伸,與先前研究結果一致。此外,Glu增加了花青素的積累,並強烈誘導了水楊酸(SA)和茉莉酸(JA)合成相關基因的表達,顯著增強了植物的抗病性。值得注意的是,我們還發現Glu能顯著促進根毛發育,並可能通過水楊酸、茉莉酸和乙烯三種防禦相關信號途徑調控。然而,Glu誘導的根毛生長機制尚需進一步深入探討。
摘要(英) Previous studies have demonstrated that glutamate (Glu), a product of primary nitrogen assimilation, can induce plant defense responses, though the underlying mechanisms remain unclear. In this study, we further investigated the effects of using Glu as the sole nitrogen source on the growth, development, and immune responses of Arabidopsis. Our results showed that Glu as the sole nitrogen source significantly inhibited primary root growth while promoting lateral root elongation, consistent with previous findings. Furthermore, Glu enhanced anthocyanin accumulation and strongly induced the expression of genes involved in salicylic acid (SA) and jasmonic acid (JA) biosynthesis, leading to a marked increase in plant disease resistance. Notably, we also observed that Glu significantly promoted root hair development, likely regulated through the SA, JA, and ethylene (ET) defense-related signaling pathways. However, the mechanism of Glu-induced root hair growth requires further investigation, as it appears to differ from pathogen-induced root hair responses, suggesting distinct signaling pathways may be involved.
關鍵字(中) ★ 麩胺酸
★ 阿拉伯芥
★ 根毛發育
★ 植物免疫
★ 水楊酸
★ 茉莉酸
關鍵字(英) ★ Glutamate
★ Arabidopsis
★ root hair elongation
★ plant immunity
★ salicylic acid
★ jasmonic acid
論文目次 摘要 ........................................................................................................................................... iii
Abstract ..................................................................................................................................... iiii
致謝 ............................................................................................................................................ ii
Contents ..................................................................................................................................... iv
List of figure ............................................................................................................................ viii
List of appendix .......................................................................................................................... x
1-1 Primary nitrogen assimilation .......................................................................................... 1
1-2 Metabolic fates of Glu ...................................................................................................... 1
1-3 Glu is a wound signal ....................................................................................................... 5
1-5 Defense hormone.............................................................................................................. 7
1-5-1 Salicylic acid ................................................................................................................. 8
1-5-2 Jasmonic acid ................................................................................................................ 9
1-5-3 Ethylene ...................................................................................................................... 10
1-5-4 Defense hormonal pathways and Glu in plant ............................................................ 10
1-6 Root hair development ................................................................................................... 11
1-6-1 Nitrogen deficiency-driven hormonal regulation of root development ...................... 11


v

1-6-2 Pathogen-triggered root hair elongation and hormonal interactions........................... 12
1-6-3 Genetic regulation of root hair development .............................................................. 13
1-7 Aim of our research ........................................................................................................ 13
Materials and methods .............................................................................................................. 15
2-1 Plant materials and growth conditions ........................................................................... 15
2-2 Protein extraction and immunoblot assay ...................................................................... 15
2-3 RNA extraction and RT-qPCR analysis .......................................................................... 16
2-4 RNA-seq analysis ........................................................................................................... 18
2-5 Glu pretreatments and pathogen infection assays .......................................................... 19
2-6 Histochemical GUS assay .............................................................................................. 20
2-7 Confocal microscopy...................................................................................................... 20
2-8 Anthocyanin quantification ............................................................................................ 21
2-9 Root hair imaging and length quantification .................................................................. 21
Result ........................................................................................................................................ 23
3-1 The effect of Glu on Arabidopsis seedlings ................................................................... 23
3-2 Glu inhibits auxin response and root stem cell niche establishment .............................. 24
3-3 Glu induces anthocyanin regulatory genes..................................................................... 24
3-4 Glu affects the gene expression of primary N assimilation ........................................... 25


vi

3-5 Glu induces SA and JA biosynthetic genes .................................................................... 27
3-6 Glu induces SA pathway ................................................................................................ 28
3-7 Glu enhances disease resistance. .................................................................................... 29
3-8 Glu induces genes enriched in defense and stress .......................................................... 29
3-9 Glu induces root hair growth .......................................................................................... 30
3-10 Glu inhibits GL2 expression ......................................................................................... 31
3-11 Glu induces root hair regulatory gene expression ........................................................ 31
3-12 Glu-induced root hair growth is alleviated in SA biosynthetic and signaling
mutants. ................................................................................................................................ 32
3-13 Glu-induced root hair growth is blocked by JA inhibitor ............................................ 33
3-14 Glu-induced root hair growth is blocked by ethylene inhibitor. .................................. 34
3-15 Nitrogen deficiency-induced root hair elongation is not affected in SA biosynthetic
and signaling mutants. .......................................................................................................... 35
Discussion ................................................................................................................................. 37
4-1 Glu′s regulation of GS and GOGAT in nitrogen metabolism......................................... 37
4-2 Glu induces stress responses and secondary metabolism .............................................. 39
4-3 Glu induces plant defense and immune responses ......................................................... 41
4-4 Differential roles of Glu and pathogen signaling in root hair elongation ...................... 43
4-5 Future research on Glu-induced receptors and defense pathways in plants ................... 46


vii

References ................................................................................................................................ 49
Figures ...................................................................................................................................... 62
Appendix .................................................................................................................................. 79
參考文獻 1. Aida, M., Beis, D., Heidstra, R., Willemsen, V., Blilou, I., Galinha, C., Nussaume,
L., Noh, Y. S., Amasino, R., & Scheres, B. (2004). The PLETHORA genes
mediate patterning of the Arabidopsis root stem cell niche. Cell, 119(1), 109–120.
2. Aljuaid, B. S., & Ashour, H. (2022). Exogenous γ-Aminobutyric Acid (GABA)
Application Mitigates Salinity Stress in Maize Plants. Life (Basel, Switzerland),
12(11), 1860.
3. Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses.
Plant molecular biology, 69(4), 473–488.
4. Bates, T.R., and Lynch, J.P. (2000). The efficiency of Arabidopsis root hairs in
phosphorus acquisition. Plant Physiol. 124: 991–998.
5. Bernard, S.M., and Habash, D.Z. (2009). The importance of cytosolic glutamine
synthetase in nitrogen assimilation and recycling. New Phytol. 182: 608–620.
6. Bown, A. W., & Shelp, B. J. (2016). Plant GABA: Not Just a Metabolite. Trends
in plant science, 21(10), 811–813.
7. Broekaert, W.F., Delaure, S.L., De Bolle, M.F., and Cammue, B.P. (2006). The
role of ethylene in host-pathogen interactions. Annu. Rev. Phytopathol. 44: 393
416.
8. Bruex, A., Kainkaryam, R. M., Wieckowski, Y., Kang, Y. H., Bernhardt, C., Xia,
Y., Zheng, X., Wang, J. Y., Lee, M. M., Benfey, P., Woolf, P. J., & Schiefelbein,
J. (2012). A gene regulatory network for root epidermis cell differentiation in
Arabidopsis. PLoS genetics, 8(1), e1002446.
9. Campbell, W.H. (1996). Nitrate reductase biochemistry comes of age. Plant
Physiol. 111: 355–361.
49
10. Chehab, E. W., Kim, S., Savchenko, T., Kliebenstein, D., Dehesh, K., & Braam, J.
(2011). Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic
acid-producing mutant. Plant physiology, 156(2), 770–778.
11. Chen, P., Ge, Y., Chen, L., Yan, F., Cai, L., Zhao, H., Lei, D., Jiang, J., Wang, M.,
& Tao, Y. (2022). SAV4 is required for ethylene-induced root hair growth
through stabilizing PIN2 auxin transporter in Arabidopsis. The New phytologist,
234(5), 1735–1752.
12. Chen, S., & Wang, S. (2019). GLABRA2, A Common Regulator for Epidermal
Cell Fate Determination and Anthocyanin Biosynthesis in Arabidopsis.
International journal of molecular sciences, 20(20), 4997.
13. Chiu, J., DeSalle, R., Lam, H. M., Meisel, L., & Coruzzi, G. (1999). Molecular
evolution of glutamate receptors: a primitive signaling mechanism that existed
before plants and animals diverged. Molecular biology and evolution, 16(6), 826
838.
14. Coruzzi G. M. (2003). Primary N-assimilation into Amino Acids in Arabidopsis.
The arabidopsis book, 2, e0010.
15. De Rybel, B., Vassileva, V., Parizot, B., et al. (2010). A novel aux/IAA28
signaling cascade activates GATA23-dependent specification of lateral root
founder cell identity. Curr. Biol. 20: 1697–1706.
16. Delteil, A., Gobbato, E., Cayrol, B., Estevan, J., Michel-Romiti, C., Dievart, A.,
Kroj, T., & Morel, J. B. (2016). Several wall-associated kinases participate
positively and negatively in basal defense against rice blast fungus. BMC plant
biology, 16, 17.
17. Dempsey, D.A., Vlot, A.C., Wildermuth, M.C., and Klessig, D.F. (2011).
Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9: e0156.
50
18. Dennison, K. L., & Spalding, E. P. (2000). Glutamate-gated calcium fluxes in
Arabidopsis. Plant physiology, 124(4), 1511–1514.
19. Dixon, D. P., Skipsey, M., & Edwards, R. (2010). Roles for glutathione
transferases in plant secondary metabolism. Phytochemistry, 71(4), 338–350.
20. Dixon, R.A., and Paiva, N.L. (1995). Stress-induced phenylpropanoid
metabolism. Plant Cell 7: 1085–1097.
21. Dubois, M., Van den Broeck, L., & Inze, D. (2018). The Pivotal Role of Ethylene
in Plant Growth. Trends in plant science, 23(4), 311–323.
22. Dubreuil-Maurizi, C., and Poinssot, B. (2012). Role of glutathione in plant
signaling under biotic stress. Plant Signal. Behav. 7: 210–212.
23. Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu. Rev.
Phytopathol. 42: 185–209.
24. Ferrer, J.L., Austin, M.B., Stewart, C., and Noel, J.P. (2008). Structure and
function of enzymes involved in the biosynthesis of phenylpropanoids. Plant
Physiol. Biochem. 46: 356–370.
25. Foehse D, Jungk A. 1983. Influence of phosphate and nitrate supply on root hair
formation of rape, spinach and tomato plants. Plant and Soil 74, 359–368.
26. Fontaine, J. X., Terce-Laforgue, T., Armengaud, P., Clement, G., Renou, J. P.,
Pelletier, S., Catterou, M., Azzopardi, M., Gibon, Y., Lea, P. J., Hirel, B., &
Dubois, F. (2012). Characterization of a NADH-dependent glutamate
dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in
root carbon and nitrogen metabolism. The Plant cell, 24(10), 4044–4065.
27. Forde, B. G., & Roberts, M. R. (2014). Glutamate receptor-like channels in plants:
a role as amino acid sensors in plant defence?. F1000prime reports, 6, 37.
51
28. Forde, B.G., and Lea, P.J. (2007). Glutamate in plants: metabolism, regulation,
and signalling. J. Exp. Bot. 58: 2339–2358.
29. Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione: the heart of the
redox hub. Plant Physiol. 155: 2–18.
30. Foyer, C.H., Parry, M.A.J., and Noctor, G. (2003). Markers and signals associated
with nitrogen assimilation in higher plants. J. Exp. Bot. 54: 585–593.
31. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and
necrotrophic pathogens. Annu. Rev. Phytopathol. 43: 205–227.
32. Gomes, G. L. B., & Scortecci, K. C. (2021). Auxin and its role in plant
development: structure, signalling, regulation and response mechanisms. Plant
biology (Stuttgart, Germany), 23(6), 894–904.
33. Goto, Y., Maki, N., Ichihashi, Y., Kitazawa, D., Igarashi, D., Kadota, Y., &
Shirasu, K. (2020). Exogenous Treatment with Glutamate Induces Immune
Responses in Arabidopsis. Molecular plant-microbe interactions : MPMI, 33(3),
474–487.
34. Grierson, C., Schiefelbein, J., and Ringli, C. (2014). Root hairs. Arabidopsis Book
12: e0172.
35. Hanson, A. D., & Gregory, J. F., 3rd (2011). Folate biosynthesis, turnover, and
transport in plants. Annual review of plant biology, 62, 105–125.
36. Hasan, M. M., Alabdallah, N. M., Alharbi, B. M., Waseem, M., Yao, G., Liu, X.
D., Abd El-Gawad, H. G., El-Yazied, A. A., Ibrahim, M. F. M., Jahan, M. S., &
Fang, X. W. (2021). GABA: A Key Player in Drought Stress Resistance in Plants.
International journal of molecular sciences, 22(18), 10136.
37. Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Glutathione in
plants: biosynthesis and physiological role in environmental stress tolerance.
52
Physiology and molecular biology of plants: an international journal of functional
plant biology, 23(2), 249–268.
38. Hodges, M. (2002). Enzyme redundancy and the importance of 2-oxoglutarate in
plant ammonium assimilation. J. Exp. Bot. 53: 905–916.
39. Howe, G.A., Major, I.T., and Koo, A.J.K. (2018). Modularity in jasmonate
signaling for multistress resilience. Annu. Rev. Plant Biol. 69: 387–415.
40. Hsieh MH, Goodman HM. The Arabidopsis IspH homolog is involved in the
plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol.
2005:138(2):641–653.
41. Hu, Q. Q., Shu, J. Q., Li, W. M., & Wang, G. Z. (2021). Role of Auxin and
Nitrate Signaling in the Development of Root System Architecture. Frontiers in
plant science, 12, 690363.
42. Huang, J., Zhao, X., Burger, M., Chory, J., and Wang, X. (2023). The role of
ethylene in plant temperature stress response. Trends Plant Sci. 28: 808–824.
43. Iqbal, N., Trivellini, A., Masood, A., Ferrante, A., & Khan, N. A. (2013). Current
understanding on ethylene signaling in plants: the influence of nutrient
availability. Plant physiology and biochemistry : PPB, 73, 128–138.
44. Ishiyama, K., Inoue, E., Watanabe-Takahashi, A., Obara, M., Yamaya, T., and
Takahashi, H. (2004). Kinetic properties and ammonium-dependent regulation of
cytosolic glutamine synthetase isozymes in Arabidopsis. J. Biol. Chem. 279:
16598–16605.
45. Jia, Z., Giehl, R. F. H., Hartmann, A., Estevez, J. M., Bennett, M. J., & von
Wiren, N. (2023). A spatially concerted epidermal auxin signaling framework
steers the root hair foraging response under low nitrogen. Current biology : CB,
33(18), 3926–3941.e5.
53
46. Juarez, S. P., Mangano, S., & Estevez, J. M. (2015). Improved ROS measurement
in root hair cells. Methods in molecular biology (Clifton, N.J.), 1242, 67–71.
47. Kadotani, N., Akagi, A., Takatsuji, H., Miwa, T., & Igarashi, D. (2016).
Exogenous proteinogenic amino acids induce systemic resistance in rice. BMC
plant biology, 16, 60.
48. Kan, C.C., Chung, Y.S., Juo, Y.A., Tsai, Y.J., and Liao, Y.J. (2017). Exogenous
glutamate rapidly induces the expression of genes involved in metabolism and
defense responses in rice roots. J. Plant Physiol. 215: 24–34.
49. Kent, W.J. (2002). BLAT—the BLAST-like alignment tool. Genome Res. 12:
656–664.
50. Klee, H.J., and Tieman, D.M. (2017). The tomato ethylene receptor family: form
and function in development and stress responses. Plant Cell 13: 1917–1931.
51. Konno, M., Ooishi, M., & Inoue, Y. (2003). Role of manganese in low-pH
induced root hair formation in Lactuca sativa cv. Grand Rapids seedlings. Journal
of plant research, 116(4), 301–307.
52. Kwon, T., Sparks, J. A., Liao, F., & Blancaflor, E. B. (2018). ERULUS Is a
Plasma Membrane-Localized Receptor-Like Kinase That Specifies Root Hair
Growth by Maintaining Tip-Focused Cytoplasmic Calcium Oscillations. The Plant
cell, 30(6), 1173–1177.
53. Labboun, S., Terce-Laforgue, T., Roscher, A., Bedu, M., Restivo, F. M., Velanis,
C. N., Skopelitis, D. S., Moschou, P. N., Roubelakis-Angelakis, K. A., Suzuki, A.,
& Hirel, B. (2009). Resolving the role of plant glutamate dehydrogenase. I. In
vivo real time nuclear magnetic resonance spectroscopy experiments. Plant & cell
physiology, 50(10), 1761–1773.
54
54. Lam, H. M., Chiu, J., Hsieh, M. H., Meisel, L., Oliveira, I. C., Shin, M., &
Coruzzi, G. (1998). Glutamate-receptor genes in plants. Nature, 396(6707), 125
126.
55. Lea, P. J., & Miflin, B. J. (1974). Alternative route for nitrogen assimilation in
higher plants. Nature, 251(5476), 614–616.
56. Lee KT, Liao HS, Hsieh MH. Glutamine metabolism, sensing, and signaling in
plants. Plant Cell Physiol. 2023:64(12):1466–1481.
57. Liao HS, Chung YH, Hsieh MH. Glutamate: a multifunctional amino acid in
plants. Plant Sci. 2022a:318:111238.
58. Liao HS, Yang CC, Hsieh MH* (2022) Nitrogen deficiency- and sucrose-induced
anthocyanin biosynthesis is modulated by HISTONE DEACETYLASE15 in
Arabidopsis. J Exp Bot 73: 3726-3742
59. Ludwig-Muller J. (2011). Auxin conjugates: their role for plant development and
in the evolution of land plants. Journal of experimental botany, 62(6), 1757–1773.
60. Martin, R. E., Marzol, E., Estevez, J. M., & Muday, G. K. (2022). Ethylene
signaling increases reactive oxygen species accumulation to drive root hair
initiation in Arabidopsis. Development (Cambridge, England), 149(13),
dev200487.
61. Masclaux-Daubresse, C., Reisdorf-Cren, M., Pageau, K., Lelandais, M.,
Grandjean, O., Kronenberger, J., Valadier, M. H., Feraud, M., Jouglet, T., &
Suzuki, A. (2006). Glutamine synthetase-glutamate synthase pathway and
glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in
tobacco. Plant physiology, 140(2), 444–456.
55
62. Masucci, J.D., and Schiefelbein, J.W. (1996). Hormones act downstream of TTG
and GL2 to promote root hair outgrowth during epidermis development in the
Arabidopsis root. Plant Cell 8: 1505–1517.
63. Michaeli, S., & Fromm, H. (2015). Closing the loop on the GABA shunt in plants:
are GABA metabolism and signaling entwined? Frontiers in plant science, 6, 419.
64. Michard, E., Lima, P. T., Borges, F., Silva, A. C., Portes, M. T., Carvalho, J. E.,
Gilliham, M., Liu, L. H., Obermeyer, G., & Feijo, J. A. (2011). Glutamate
receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil
D-serine. Science (New York, N.Y.), 332(6028), 434–437.
65. Mittler, R., Zandalinas, S. I., Fichman, Y., & Van Breusegem, F. (2022). Reactive
oxygen species signalling in plant stress responses. Nature reviews. Molecular cell
biology, 23(10), 663–679.
66. Muthamilarasan, M., & Prasad, M. (2013). Plant innate immunity: an updated
insight into defense mechanism. Journal of biosciences, 38(2), 433–449.
67. Nadarajah K. K. (2020). ROS Homeostasis in Abiotic Stress Tolerance in Plants.
International journal of molecular sciences, 21(15), 5208.
68. Nemeth, E., Nagy, Z., & Pecsvaradi, A. (2018). Chloroplast Glutamine
Synthetase, the Key Regulator of Nitrogen Metabolism in Wheat, Performs Its
Role by Fine Regulation of Enzyme Activity via Negative Cooperativity of Its
Subunits. Frontiers in plant science, 9, 191.
69. Nemeth, E., Nagy, Z., & Pecsvaradi, A. (2018). Chloroplast Glutamine
Synthetase, the Key Regulator of Nitrogen Metabolism in Wheat, Performs Its
Role by Fine Regulation of Enzyme Activity via Negative Cooperativity of Its
Subunits. Frontiers in plant science, 9, 191.
56
70. Owen AG, Jonse DL. Competition for amino acids between wheat roots and
rhizosphere microorganisms and the role of amino acids in plant N acquisition.
Soil Biol Biochem. 2001:33(4–5):651–657.
71. Pecenkova, T., Hala, M., Kulich, I., Krenek, P., and ?arsky, V. (2017). Pathogen
induced root hair growth in Arabidopsis thaliana. Ann. Bot. 119: 779–792.
72. Pei, Z., Huang, Y., Ni, J., Liu, Y., & Yang, Q. (2024). For a Colorful Life: Recent
Advances in Anthocyanin Biosynthesis during Leaf Senescence. Biology, 13(5),
329.
73. Peng, Y., Yang, J., Li, X., & Zhang, Y. (2021). Salicylic Acid: Biosynthesis and
Signaling. Annual review of plant biology, 72, 761–791.
74. Qi, Z., Stephens, N. R., & Spalding, E. P. (2006). Calcium entry mediated by
GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant
physiology, 142(3), 963–971.
75. Rekhter, D., Ludke, D., Ding, Y., Feussner, K., Zienkiewicz, K., Lipka, V.,
Wiermer, M., Zhang, Y., & Feussner, I. (2019). Isochorismate-derived
biosynthesis of the plant stress hormone salicylic acid. Science (New York, N.Y.),
365(6452), 498–502.
76. Robinson D, Rorison IH. 1987. Root hairs and plant-growth at low nitrogen
availabilities. New Phytologist 107, 681–693.
77. Ruan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W., Cheng, J., &
Zhang, K. (2019). Jasmonic Acid Signaling Pathway in Plants. International
journal of molecular sciences, 20(10), 2479.
78. Rubio-Wilhelmi, M.delM., Sanchez-Rodriguez, E., Rosales, M. A., Blasco, B.,
Rios, J. J., Romero, L., Blumwald, E., & Ruiz, J. M. (2011). Cytokinin-dependent
57
improvement in transgenic P(SARK)::IPT tobacco under nitrogen deficiency.
Journal of agricultural and food chemistry, 59(19), 10491–10495.
79. Schaller, A., and Weiler, E.W. (1997). Molecular cloning and characterization of
12-oxophytodienoate reductase from tomato: induction by wounding and substrate
specificity. Arch. Biochem. Biophys. 336: 201–207.
80. Shibata, M., Breuer, C., Kawamura, A., Clark, N. M., Rymen, B., Braidwood, L.,
Morohashi, K., Busch, W., Benfey, P. N., Sozzani, R., & Sugimoto, K. (2018).
GTL1 and DF1 regulate root hair growth through transcriptional repression of
ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis. Development (Cambridge,
England), 145(3), dev159707.
81. Song, L., Yu, H., Dong, J., Che, X., Jiao, Y., & Liu, D. (2016). The Molecular
Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate
Starvation. PLoS genetics, 12(7), e1006194.
82. Song, S., Huang, H., Gao, H., Wang, J., Wu, D., Liu, X., Yang, S., Zhai, Q., Li,
C., Qi, T., & Xie, D. (2014). Interaction between MYC2 and ETHYLENE
INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling
in Arabidopsis. The Plant cell, 26(1), 263–279.
83. Taira, M., Valtersson, U., Burkhardt, B., & Ludwig, R. A. (2004). Arabidopsis
thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria
and chloroplasts. The Plant cell, 16(8), 2048–2058.
84. Tam, Y. Y., Epstein, E., & Normanly, J. (2000). Characterization of auxin
conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate,
indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant physiology, 123(2),
589–596.
58
85. Tang, D., Wang, G., & Zhou, J. M. (2017). Receptor Kinases in Plant-Pathogen
Interactions: More Than Pattern Recognition. The Plant cell, 29(4), 618–637.
86. Tarkowski, ?. P., Signorelli, S., & Hofte, M. (2020). γ-Aminobutyric acid and
related amino acids in plant immune responses: Emerging mechanisms of action.
Plant, cell & environment, 43(5), 1103–1116.
87. Tseng CC, Lee CJ, Chung YT, Sung TY, Hsieh MH. Differential regulation of
Arabidopsis plastid gene expression and RNA editing in non- photosynthetic
tissues. Plant Mol Biol. 2013:82(4–5):375–392.
88. Vatter T, Neuhauser B, Stetter M, Ludewig U. 2015. Regulation of length and
density of Arabidopsis root hairs by ammonium and nitrate. Journal of Plant
Research 128, 839–848.
89. Verslues, P. E., & Sharma, S. (2010). Proline metabolism and its implications for
plant-environment interaction. The arabidopsis book, 8, e0140.
90. Vidal, E.A., Alvarez, J.M., Moyano, T.C., and Gutierrez, R.A. (2020). Nitrate
signaling and early responses in Arabidopsis roots. J. Exp. Bot. 71: 622–631.
91. Vissenberg, K., Claeijs, N., Balcerowicz, D., & Schoenaers, S. (2020). Hormonal
regulation of root hair growth and responses to the environment in Arabidopsis.
Journal of experimental botany, 71(8), 2412–2427.
92. Vissenberg, K., Claeijs, N., Balcerowicz, D., and Schoenaers, S. (2020).
Hormonal regulation of root hair growth and responses to the environment in
Arabidopsis. J. Exp. Bot. 71: 2412–2427.
93. Vlot, A.C., Dempsey, D.A., and Klessig, D.F. (2009). Salicylic acid, a
multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47: 177–206.
59
94. Wang, N.N., Shih, M.C., and Li, N. (2005). The GUS reporter-aided analysis of
the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5,
and AtACS7 induced by hormones and stresses. J. Exp. Bot. 56: 909–920.
95. Wang, P., Ji, S., & Grimm, B. (2022). Post-translational regulation of metabolic
checkpoints in plant tetrapyrrole biosynthesis. Journal of experimental botany,
73(14), 4624–4636.
96. Wasternack, C., and Song, S. (2017). Jasmonate signaling in plant stress responses
and development. Plant Cell 29: 153–170.
97. Winter, G., Todd, C. D., Trovato, M., Forlani, G., & Funck, D. (2015).
Physiological implications of arginine metabolism in plants. Frontiers in plant
science, 6, 534.
98. Xu, B., Long, Y., Feng, X., Zhu, X., Sai, N., Chirkova, L., Betts, A., Herrmann, J.,
Edwards, E. J., Okamoto, M., Hedrich, R., & Gilliham, M. (2021). GABA
signalling modulates stomatal opening to enhance plant water use efficiency and
drought resilience. Nature communications, 12(1), 1952.
99. Xue, C., Li, W., Shen, R., & Lan, P. (2021). PERK13 modulates phosphate
deficiency-induced root hair elongation in Arabidopsis. Plant science : an
international journal of experimental plant biology, 312, 111060.
100. Xue, N., Zhan, C., Song, J., Li, Y., Zhang, J., Qi, J., & Wu, J. (2022). The
glutamate receptor-like 3.3 and 3.6 mediate systemic resistance to insect
herbivores in Arabidopsis.
101. Yu, B., Liu, N., Tang, S., Qin, T., & Huang, J. (2022). Roles of Glutamate
Receptor-Like Channels (GLRs) in Plant Growth and Response to Environmental
Stimuli. Plants (Basel, Switzerland), 11(24), 3450.
60
102. Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., &
Bahadar, K. (2018). Role of secondary metabolites in plant defense against
pathogens. Microbial pathogenesis, 124, 198–202.
103. Zhang, L., Zhang, F., Melotto, M., Yao, J., & He, S. Y. (2017). Jasmonate
signaling and manipulation by pathogens and insects. Journal of experimental
botany, 68(6), 1371–1385.
104. Zhang, Q., Gong, M., Xu, X., Li, H., & Deng, W. (2022). Roles of Auxin in the
Growth, Development, and Stress Tolerance of Horticultural Plants. Cells, 11(17),
2761.
105. Zhao Y. (2010). Auxin biosynthesis and its role in plant development. Annual
review of plant biology, 61, 49–64.
指導教授 葉靖輝 謝明勳(Ching-Hui Yeh Ming-Hsiun Hsieh) 審核日期 2024-10-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明