博碩士論文 111821017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:130 、訪客IP:3.133.134.153
姓名 譚崇倫(Chong-Lun Tan)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討食入及吸入聚苯乙烯塑膠微粒對小鼠行為的影響
(Investigating the adverse effects of polystyrene microplastics via different exposure routes on mouse behaviors)
相關論文
★ 探討暴露聚苯乙烯塑膠微粒對小鼠大腦學習與記憶之分子機制與神經發炎的影響★ 探討剔除Dtnbp1基因對於公和母鼠前額葉多巴胺傳遞路徑與社交行為的影響
★ 探討早期壓力及成年慢性不可預測壓力對恐懼社交轉移的影響★ 探討壓力對觀察恐懼學習的影響: 雄性小鼠杏仁核腦區分子機制探討
★ 探討壓力對於雌性小鼠觀察恐懼學習的影響★ Development of Seasonal Influenza Virus-like Particle (VLP) Vaccines Using Insect Cell-based Baculovirus Expressing System
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-30以後開放)
摘要(中) 塑膠微粒(microplastics, MPs)為直徑小於5毫米的微型塑膠顆粒,是現今主要的環境汙染物,塑膠微粒會透過攝入或吸入的方式進入體內並堆積在組織或器官中,也會讓實驗小鼠肝臟、腎臟、腸胃道等器官產生發炎反應進而導致器官受損。先前實驗室研究發現,實驗小鼠利用管餵暴露在2μm聚苯乙烯塑膠微粒(polystyrene microplastics, PS-MPs)環境下連續8周,塑膠微粒會堆積在小鼠大腦海馬迴中,也會導致小鼠的學習與記憶力功能受損,但PS-MPs訊號如何影響大腦的機制及迴路仍然未知,本篇研究建立切除迷走神經的塑膠微粒小鼠模型以探討PS-MPs的訊號迴路。實驗過程中,在管餵小鼠2μm 0.016mg/g (body weight) PS-MPs 4周後進行迷走神經切除術,術後繼續管餵小鼠PS-MPs 4周,後續進行行為學相關實驗,由於迷走神經主要參與了大腦與腸胃之間的雙向溝通,結果顯示切除迷走神經的塑膠微粒小鼠在新穎事務識別測驗中較偏好探索新穎的積木,在水迷宮實驗中也記得逃生平台所在的位置,且花費較多時間待在逃生平台所放置的方位,顯示切除迷走神經後可以挽救PS-MPs對小鼠造成的學習與記憶力缺陷,間接證明PS-MPs是透過迷走神經迴路影響小鼠的學習與記憶力功能。由於塑膠微粒除了可以從消化道進入體內,還會透過呼吸進入肺臟中,因此本研究也建立吸入塑膠微粒小鼠模型,利用氣管餵藥讓小鼠吸入2μm 0.016mg/g (body weight) PS-MPs 8周或16周,後續進行行為學實驗檢測,結果顯示吸入16周PS-MPs小鼠在三室社交行為測驗的社交識別能力測試中塑膠微粒小鼠對於第二隻陌生小鼠的偏好指數有下降的趨勢,顯示吸入PS-MPs對於小鼠的社交識別能力產生些微的障礙,但PS-MPs對小鼠運動、焦慮、憂鬱、學習與記憶力方面皆沒有影響。總結本論文實驗結果,發現小鼠透過腸道暴露聚苯乙烯塑膠微粒所造成腦與神經行為的受損更甚於氣管暴露途徑。
摘要(英) Microplastics (MPs) are plastic pieces smaller than 5 mm that have emerged as one type of pollutant around the world. A grow bodying of evidence has shown that MPs accumulate in many organs, including the liver, kidney, and gut, causing inflammation and metabolic dysregulation in animal models. In our laboratory, we previously have demonstrated that polystyrene microplastics (PS-MPs) located in the hippocampus of brains of mice with 2 μm PS-MPs exposure through oral gavage for eight weeks. Those PS-MPs mice also showed learning and memory impairment. However, how PS-MPs change behavior in mice is still unknown. In this thesis, I fed mice with 2 μm 0.016 mg/g (body weight) PS-MPs through oral gavage for four weeks, and mice were performed vagotomy surgery afterward. Mice were continuously fed with PS-MPs through oral gavage for four weeks. In behavioral tests, ablation of the vagus nerve, the major nerve mediated gut and brain, rescued learning and memory of mice in novel object recognition and Morris water maze. Our study suggested that the adverse effects of PS-MPs in mice are in part via vagus nerve-dependent pathway. Since MPs exposure can be through ingestion and inhalation, I further investigated whether inhalation of PS-MPs causes brain damage and behavioral deficits. Mice were given PS-MPs through intratracheal administration for eight weeks and sixteen weeks followed by a battery of behavioral tests. The behavioral results showed that mice exposed to PS-MPs for sixteen weeks exhibited a trend toward a decrease in social novelty but not sociability in the three-chamber social interaction test. While learning and memory, locomotor activity, stress, and anxiety-like behaviors remained normal in PS-MPs mice compared to control mice. Taken together, the results indicate that exposure to PS-MPs in mice through oral gavage has more profound adverse effects on brain and behavior compared to mice exposed to PS-MPS via intratracheal administration.
關鍵字(中) ★ 聚苯乙烯塑膠微粒
★ 迷走神經
★ 學習與記憶力
關鍵字(英) ★ polystyrene microplastics
★ vagus nerve
★ learning and memory
論文目次 中文摘要 I
英文摘要ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 VIII
中英文對照表 IX
一、緒論 1
1-1 塑膠微粒 1
1-2 人類接觸到塑膠微粒的途徑 1
1-3 食入塑膠微粒對實驗小鼠周邊器官的影響 4
1-4 吸入塑膠微粒對肺部細胞及實驗小鼠呼吸系統的影響 7
1-5 塑膠微粒對神經系統的影響 8
1-6 不同路徑暴露塑膠微粒對實驗小鼠神經行為的影響 9
1-7 研究動機與目的 11
二、 研究方法 12
2-1 實驗動物 12
2-2 建立塑膠微粒小鼠模型 12
2-2-1 小鼠餵食2 μm聚苯乙烯塑膠微粒動物模型 12
2-2-2 小鼠吸入2 μm聚苯乙烯塑膠微粒動物模型 12
2-3 曠野實驗 Open field test (OFT) 13
2-4 高架十字迷宮 Elevated plus maze (EPM) 13
2-5 新穎事物識別實驗 Novel object recognition (NOR) 13
2-6 恐懼制約測試 Fear conditioning 14
2-7 水迷宮 Morris water maze (MWM) 14
2-8 懸尾測試 Tail suspension test (TST) 15
2-9 三室社交行為測驗 Three-chamber social interaction test 15
2-10 明暗箱實驗 Light/dark box 16
2-11 迷走神經切除術 Vagotomy surgery 16
2-12 Cholecystokinin 8 (CCK-8)測試 17
2-13 統計分析 17
三、研究結果 18
3-1 攝入PS-MPs與迷走神經切除術對於小鼠體重、運動功能、焦慮表現的影響 18
3-2 攝入PS-MPs降低小鼠學習及記憶力,切除迷走神經後可挽救PS-MPs造成的學習與記憶力缺陷 19
3-3 吸入PS-MPs 8周對於小鼠體重、運動功能、焦慮及憂鬱表現的影響 20
3-4 吸入PS-MPs 8周對於小鼠學習與記憶力的影響 20
3-5 吸入PS-MPs 8周對於小鼠社交能力的影響 21
3-6 吸入PS-MPs 16周對於小鼠體重、運動功能、焦慮及壓力表現的影響 21
3-7 吸入PS-MPs 16周對於小鼠學習與記憶力的影響 22
3-8 吸入PS-MPs 16周對於小鼠社交能力的影響 23
四、討論 24
五、結論 28
參考文獻 40
參考文獻 1. Kannan, K. and K. Vimalkumar, A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. Front Endocrinol (Lausanne), 2021. 12: p. 724989.
2. Koelmans, A.A., et al., Solving the nonalignment of methods and approaches used in microplastic research to consistently characterize risk. Environmental science & technology, 2020. 54(19): p. 12307-12315.
3. Hartmann, N.B., et al., Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ Sci Technol, 2019. 53(3): p. 1039-1047.
4. Napper, I.E., et al., Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Marine pollution bulletin, 2015. 99(1-2): p. 178-185.
5. John, J., et al., Microplastics in mangroves and coral reef ecosystems: a review. Environmental Chemistry Letters, 2022: p. 1-20.
6. Unnikrishnan, V., et al., Analytical predictive capabilities of laser induced breakdown spectroscopy (LIBS) with principal component analysis (PCA) for plastic classification. Rsc Advances, 2013. 3(48): p. 25872-25880.
7. Geyer, R., J.R. Jambeck, and K.L. Law, Production, use, and fate of all plastics ever made. Science advances, 2017. 3(7): p. e1700782.
8. Ogunola, O.S., O.A. Onada, and A.E. Falaye, Mitigation measures to avert the impacts of plastics and microplastics in the marine environment (a review). Environmental Science and Pollution Research, 2018. 25(10): p. 9293-9310.
9. van Sebille, E., et al., A global inventory of small floating plastic debris. Environmental Research Letters, 2015. 10(12).
10. Rochman, C.M., Microplastics research—from sink to source. Science, 2018. 360(6384): p. 28-29.
11. Su, L., et al., Global transportation of plastics and microplastics: a critical review of pathways and influences. Science of The Total Environment, 2022: p. 154884.
12. Li, C., R. Busquets, and L.C. Campos, Assessment of microplastics in freshwater systems: A review. Science of the Total Environment, 2020. 707: p. 135578.
13. Wang, W., J. Ge, and X. Yu, Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicology and environmental safety, 2020. 189: p. 109913.
14. Sutton, R., et al., Microplastic contamination in the san francisco bay, California, USA. Marine pollution bulletin, 2016. 109(1): p. 230-235.
15. Li, J., et al., Microplastics in mussels along the coastal waters of China. Environmental pollution, 2016. 214: p. 177-184.
16. Renzi, M., C. Guerranti, and A. Blašković, Microplastic contents from maricultured and natural mussels. Marine pollution bulletin, 2018. 131: p. 248-251.
17. Van Cauwenberghe, L. and C.R. Janssen, Microplastics in bivalves cultured for human consumption. Environmental pollution, 2014. 193: p. 65-70.
18. He, P., et al., Municipal solid waste (MSW) landfill: A source of microplastics?-Evidence of microplastics in landfill leachate. Water research, 2019. 159: p. 38-45.
19. Steinmetz, Z., et al., Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the total environment, 2016. 550: p. 690-705.
20. Huang, Y., et al., LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environmental Pollution, 2019. 254: p. 112983.
21. Wang, W., et al., Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Science of the total environment, 2020. 708: p. 134841.
22. Huerta Lwanga, E., et al., Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 2017. 7(1): p. 14071.
23. Zhang, Q., et al., A review of microplastics in table salt, drinking water, and air: direct human exposure. Environmental Science & Technology, 2020. 54(7): p. 3740-3751.
24. Dris, R., et al., A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental pollution, 2017. 221: p. 453-458.
25. Tong, H., et al., Occurrence and identification of microplastics in tap water from China. Chemosphere, 2020. 252: p. 126493.
26. Pivokonský, M., et al., Occurrence and fate of microplastics at two different drinking water treatment plants within a river catchment. Science of the Total Environment, 2020. 741: p. 140236.
27. Oliveri Conti, G., et al., Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ Res, 2020. 187: p. 109677.
28. Wright, S.L., R.C. Thompson, and T.S. Galloway, The physical impacts of microplastics on marine organisms: a review. Environmental pollution, 2013. 178: p. 483-492.
29. Lusher, A.L., M. Mchugh, and R.C. Thompson, Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Marine pollution bulletin, 2013. 67(1-2): p. 94-99.
30. Boerger, C.M., et al., Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Marine pollution bulletin, 2010. 60(12): p. 2275-2278.
31. Liebezeit, G. and E. Liebezeit, Non-pollen particulates in honey and sugar. Food Additives & Contaminants: Part A, 2013. 30(12): p. 2136-2140.
32. Liebezeit, G. and E. Liebezeit, Synthetic particles as contaminants in German beers. Food Additives & Contaminants: Part A, 2014. 31(9): p. 1574-1578.
33. Li, Y., et al., A microscopic survey on microplastics in beverages: the case of beer, mineral water and tea. Analyst, 2022. 147(6): p. 1099-1105.
34. Kim, J.-S., et al., Global pattern of microplastics (MPs) in commercial food-grade salts: sea salt as an indicator of seawater MP pollution. Environmental science & technology, 2018. 52(21): p. 12819-12828.
35. Waring, R.H., R. Harris, and S. Mitchell, Plastic contamination of the food chain: A threat to human health? Maturitas, 2018. 115: p. 64-68.
36. Bouwmeester, H., P.C. Hollman, and R.J. Peters, Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environmental science & technology, 2015. 49(15): p. 8932-8947.
37. Yan, Z., et al., Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status. Environ Sci Technol, 2022. 56(1): p. 414-421.
38. Ragusa, A., et al., Plasticenta: First evidence of microplastics in human placenta. Environment International, 2021. 146: p. 106274.
39. Zhu, L., et al., Identification of microplastics in human placenta using laser direct infrared spectroscopy. Science of the Total Environment, 2023. 856: p. 159060.
40. Ragusa, A., et al., Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers, 2022. 14(13): p. 2700.
41. Jenner, L.C., et al., Detection of microplastics in human lung tissue using μFTIR spectroscopy. Science of the Total Environment, 2022. 831: p. 154907.
42. Amato-Lourenço, L.F., et al., Presence of airborne microplastics in human lung tissue. Journal of Hazardous Materials, 2021. 416: p. 126124.
43. Huang, S., et al., Detection and analysis of microplastics in human sputum. Environmental Science & Technology, 2022. 56(4): p. 2476-2486.
44. Leslie, H.A., et al., Discovery and quantification of plastic particle pollution in human blood. Environment international, 2022. 163: p. 107199.
45. Zhao, Q., et al., Detection and characterization of microplastics in the human testis and semen. Science of The Total Environment, 2023. 877: p. 162713.
46. Cox, K.D., et al., Human Consumption of Microplastics. Environ Sci Technol, 2019. 53(12): p. 7068-7074.
47. Revel, M., A. Châtel, and C. Mouneyrac, Micro (nano) plastics: A threat to human health? Current Opinion in Environmental Science & Health, 2018. 1: p. 17-23.
48. Deng, Y., et al., Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep, 2017. 7: p. 46687.
49. Sun, R., et al., Preliminary study on impacts of polystyrene microplastics on the hematological system and gene expression in bone marrow cells of mice. Ecotoxicol Environ Saf, 2021. 218: p. 112296.
50. Lu, L., et al., Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ, 2018. 631-632: p. 449-458.
51. Jin, Y., et al., Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ, 2019. 649: p. 308-317.
52. Fan, X., et al., Effects of oral administration of polystyrene nanoplastics on plasma glucose metabolism in mice. Chemosphere, 2022. 288: p. 132607.
53. Wen, S., et al., Polystyrene microplastics exacerbated liver injury from cyclophosphamide in mice: Insight into gut microbiota. Science of the Total Environment, 2022. 840: p. 156668.
54. Zheng, H., et al., Proinflammatory properties and lipid disturbance of polystyrene microplastics in the livers of mice with acute colitis. Science of the Total Environment, 2021. 750: p. 143085.
55. Huang, D., et al., Polystyrene microplastic exposure induces insulin resistance in mice via dysbacteriosis and pro-inflammation. Science of The Total Environment, 2022. 838: p. 155937.
56. Shi, C., et al., Disturbed Gut-Liver axis indicating oral exposure to polystyrene microplastic potentially increases the risk of insulin resistance. Environment International, 2022. 164: p. 107273.
57. Hou, B., et al., Reproductive toxicity of polystyrene microplastics: In vivo experimental study on testicular toxicity in mice. Journal of Hazardous Materials, 2021. 405: p. 124028.
58. Jin, H., et al., Polystyrene microplastics induced male reproductive toxicity in mice. Journal of hazardous materials, 2021. 401: p. 123430.
59. Zhao, T., et al., Prenatal and postnatal exposure to polystyrene microplastics induces testis developmental disorder and affects male fertility in mice. Journal of Hazardous Materials, 2023. 445: p. 130544.
60. Wei, Z., et al., Comparing the effects of polystyrene microplastics exposure on reproduction and fertility in male and female mice. Toxicology, 2022. 465: p. 153059.
61. Wei, Y., et al., Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. Environmental Pollution, 2021. 289: p. 117904.
62. Liu, Z., et al., Polystyrene microplastics induced female reproductive toxicity in mice. Journal of Hazardous Materials, 2022. 424: p. 127629.
63. Hou, J., et al., Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats. Ecotoxicology and environmental safety, 2021. 212: p. 112012.
64. An, R., et al., Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology, 2021. 449: p. 152665.
65. Chen, G., et al., Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. Science of The Total Environment, 2023. 854: p. 158666.
66. Harvey, N.E., et al., Maternal exposure to polystyrene nanoplastics impacts developmental milestones and brain structure in mouse offspring. Environmental Science: Advances, 2023. 2(4): p. 622-628.
67. Deng, Y., et al., Polystyrene Microplastics Affect the Reproductive Performance of Male Mice and Lipid Homeostasis in Their Offspring. Environmental Science & Technology Letters, 2022. 9(9): p. 752-757.
68. Goodman, K.E., et al., Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes. Chemical research in toxicology, 2021. 34(4): p. 1069-1081.
69. Xu, M., et al., Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell. Science of the Total Environment, 2019. 694: p. 133794.
70. Dong, C.-D., et al., Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. Journal of hazardous materials, 2020. 385: p. 121575.
71. Jeon, M.S., et al., Polystyrene microplastic particles induce autophagic cell death in BEAS‐2B human bronchial epithelial cells. Environmental Toxicology, 2023. 38(2): p. 359-367.
72. Luo, H., et al., The regulation of circRNA_kif26b on alveolar epithelial cell senescence via miR-346-3p is involved in microplastics-induced lung injuries. Science of The Total Environment, 2023: p. 163512.
73. Li, X., et al., Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/beta-catenin signaling pathway in mice. Ecotoxicol Environ Saf, 2022. 232: p. 113238.
74. Fournier, S.B., et al., Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Particle and Fibre Toxicology, 2020. 17(1): p. 1-11.
75. Schirinzi, G.F., et al., Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environmental Research, 2017. 159: p. 579-587.
76. Kwon, W., et al., Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. Science of the Total Environment, 2022. 807: p. 150817.
77. Shan, S., et al., Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere, 2022. 298: p. 134261.
78. Liang, B., et al., Brain single-nucleus transcriptomics highlights that polystyrene nanoplastics potentially induce Parkinson’s disease-like neurodegeneration by causing energy metabolism disorders in mice. Journal of Hazardous Materials, 2022. 430: p. 128459.
79. Wang, S., et al., Polystyrene microplastics affect learning and memory in mice by inducing oxidative stress and decreasing the level of acetylcholine. Food and Chemical Toxicology, 2022. 162: p. 112904.
80. Guimarães, A.T.B., et al., Exposure to polystyrene nanoplastics induces an anxiolytic-like effect, changes in antipredator defensive response, and DNA damage in Swiss mice. Journal of hazardous materials, 2023. 442: p. 130004.
81. Lee, C.-W., et al., Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. Journal of Hazardous Materials, 2022. 430: p. 128431.
82. Jin, H., et al., Evaluation of Neurotoxicity in BALB/c Mice following Chronic Exposure to Polystyrene Microplastics. Environmental health perspectives, 2022. 130(10): p. 107002.
83. Liu, X., et al., Bioeffects of Inhaled Nanoplastics on Neurons and Alteration of Animal Behaviors through Deposition in the Brain. Nano Lett, 2022. 22(3): p. 1091-1099.
84. Yang, J.-Z., et al., Epigallocatechin-3-gallate ameliorates polystyrene microplastics-induced anxiety-like behavior in mice by modulating gut microbe homeostasis. Science of The Total Environment, 2023: p. 164619.
85. Fülling, C., T.G. Dinan, and J.F. Cryan, Gut microbe to brain signaling: what happens in vagus…. Neuron, 2019. 101(6): p. 998-1002.
86. Décarie-Spain, L., et al. The gut-brain axis and cognitive control: A role for the vagus nerve. in Seminars in Cell & Developmental Biology. 2023. Elsevier.
87. Bucinskaite, V., M. Kurosawa, and T. Lundeberg, Exogenous cholecystokinin‐8 reduces vagal efferent nerve activity in rats through CCKA receptors. British journal of pharmacology, 2000. 129(8): p. 1649-1654.
88. Chen, X., et al., Polystyrene micro-and nanoparticles exposure induced anxiety-like behaviors, gut microbiota dysbiosis and metabolism disorder in adult mice. Ecotoxicology and Environmental Safety, 2023. 259: p. 115000.
89. Jiang, W., et al., Dysregulation of the microbiota-brain axis during long-term exposure to polystyrene nanoplastics in rats and the protective role of dihydrocaffeic acid. Science of The Total Environment, 2023. 874: p. 162101.
90. Chen, Y., J. Xu, and Y. Chen, Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients, 2021. 13(6): p. 2099.
91. Vogt, N.M., et al., Gut microbiome alterations in Alzheimer’s disease. Scientific reports, 2017. 7(1): p. 13537.
92. Zhuang, Z.-Q., et al., Gut microbiota is altered in patients with Alzheimer’s disease. Journal of Alzheimer′s disease, 2018. 63(4): p. 1337-1346.
93. Strandwitz, P., et al., GABA-modulating bacteria of the human gut microbiota. Nature microbiology, 2019. 4(3): p. 396-403.
94. Chang, C.-H., C.-H. Lin, and H.-Y. Lane, d-glutamate and Gut Microbiota in Alzheimer’s Disease. International journal of molecular sciences, 2020. 21(8): p. 2676.
95. Zaheer, J., et al., Pre/post-natal exposure to microplastic as a potential risk factor for autism spectrum disorder. Environment International, 2022. 161: p. 107121.
96. Cao, J., et al., Exposure to polystyrene microplastics triggers lung injury via targeting toll-like receptor 2 and activation of the NF-κB signal in mice. Environmental Pollution, 2023: p. 121068.
97. Lim, D., et al., Inhalation toxicity of polystyrene micro (nano) plastics using modified OECD TG 412. Chemosphere, 2021. 262: p. 128330.
98. Bell, M.L., et al., Spatial and temporal variation in PM2. 5 chemical composition in the United States for health effects studies. Environmental health perspectives, 2007. 115(7): p. 989-995.
99. Shou, Y., et al., Ambient PM2. 5 chronic exposure leads to cognitive decline in mice: From pulmonary to neuronal inflammation. Toxicology letters, 2020. 331: p. 208-217.
100. Zhang, T., et al., Maternal exposure to PM2. 5 during pregnancy induces impaired development of cerebral cortex in mice offspring. International journal of molecular sciences, 2018. 19(1): p. 257.
101. Zha, H., et al., Airborne polystyrene microplastics and nanoplastics induce nasal and lung microbial dysbiosis in mice. Chemosphere, 2023. 310: p. 136764.
指導教授 黃佳瑜(Chia-Yu Huang) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明