參考文獻 |
1. Ruben D. Motrich, et al., Implications of prostate inflammation on male fertility. Andrologia, 2018. 50(11): p. e13093.
2. Freddie Bray, et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024. 74(3): p. 229-263.
3. 國民健康署. 2023; Available from: https://www.mohw.gov.tw/cp-16-76564-1.html.
4. Ferlay, J., D.M. Parkin, and E. Steliarova-Foucher, Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer, 2010. 46(4): p. 765-81.
5. Ramogomo Frans Matshela , Johanna E Maree and Corrien van Belkum, Prevention and detection of prostate cancer: a pilot intervention in a resource--poor South African community. Cancer Nurs, 2014. 37(3): p. 189-97.
6. Mohan Adhyam and Anish Kumar Gupta, A Review on the Clinical Utility of PSA in Cancer Prostate. Indian J Surg Oncol, 2012. 3(2): p. 120-129.
7. Christian Bach, et al., The status of surgery in the management of high-risk prostate cancer. Nat Rev Urol, 2014. 11(6): p. 342-351.
8. Jiajia Chen, et al., Translational bioinformatics for diagnostic and prognostic prediction of prostate cancer in the next-generation sequencing era. Biomed Res Int, 2013. 7: p. 901578.
9. Mamello Sekhoacha, et al., Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules, 2022. 27(17): p. 5730.
10. Deborah Termini, et al., Curcumin against Prostate Cancer: Current Evidence. Biomolecules, 2020. 10(11): p. 1536.
11. Diping Wang and Donald J Tindall, Androgen Action During Prostate Carcinogenesis. 2011. 776: p. 25-44.
12. Takeshi Namekawa, et al., Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells. Cells, 2019. 8(1): p. 74.
13. Fatouma Alimirah, et al., DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett, 2006. 580(9): p. 2294-2300.
14. M E Kaighn, et al., Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol, 1979. 17(1): p. 16-23.
15. D D Mickey, et al., Heterotransplantation of a human prostatic adenocarcinoma cell line in nude mice. Cancer Res, 1977. 37(11): p. 4049-4058.
16. Zhencheng Lai, Tanshinones: An Update in the Medicinal Chemistry in Recent 5 Years. Curr Med Chem, 2021. 28(14): p. 2807-2827.
17. Ching-Yuan Wu, et al., Anti-cancer effect of danshen and dihydroisotanshinone I on prostate cancer: targeting the crosstalk between macrophages and cancer cells via inhibition of the STAT3/CCL2 signaling pathway. Oncotarget, 2017. 8(25): p. 40246-40263.
18. Wei Li, et al., Molecular Mechanism of Tanshinone against Prostate Cancer. Molecules, 2022. 27(17): p. 5594.
19. Ching-Feng Cheng, et al., Adipocyte browning and resistance to obesity in mice is induced by expression of ATF3. Communications Biology, 2019. 2(1): p. 389.
20. Hui-Chen Ku, et al., The ATF3 inducer protects against diet-induced obesity via suppressing adipocyte adipogenesis and promoting lipolysis and browning. Biomed Pharmacother, 2022. 145: p. 112440.
21. K J Pienta, Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer. Seminars in Oncology, 2001. 28: p. 3-7.
22. Yaron Fuchs and Hermann Steller, Programmed cell death in animal development and disease. Cell, 2011. 147(4): p. 742-58.
23. G Hacker, The morphology of apoptosis. Cell Tissue Res, 2000. 301(1): p. 5-17.
24. A Saraste and K Pulkki, Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res, 2000. 45(3): p. 528-37.
25. Susan Elmore, Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
26. Peter E Lonergan and Donald J Tindall, Androgen receptor signaling in prostate cancer development and progression. J Carcinog, 2011. 10: p. 20.
27. Ju-Ha Kim, et al., Implications of Bcl-2 and its interplay with other molecules and signaling pathways in prostate cancer progression. Expert Opinion on Therapeutic Targets, 2017. 21(9): p. 911-920.
28. H Perlman, et al., An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death Differ, 1999. 6(1): p. 48-54.
29. Tateki Yoshino, et al., Bcl-2 Expression as a Predictive Marker of Hormone-Refractory Prostate Cancer Treated with Taxane-Based Chemotherapy. Clinical Cancer Research, 2006. 12(20): p. 6116-6124.
30. M Krajewska, et al., Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol, 1996. 148(5): p. 1567-76.
31. Amaal Ali and George Kulik, Signaling Pathways That Control Apoptosis in Prostate Cancer. Cancers (Basel), 2021. 13(5): p. 937.
32. Minggang Zhu, et al., Caspase-Linked Programmed Cell Death in Prostate Cancer: From Apoptosis, Necroptosis, and Pyroptosis to PANoptosis. Biomolecules, 2023. 13(12): p. 1715.
33. Robert R Zielinski, Bernhard J Eigl and Kim N Chi, Targeting the Apoptosis Pathway in Prostate Cancer. The Cancer Journal, 2013. 19(1): p. 79-89.
34. Danielle Glick , Sandra Barth and Kay F Macleod, Macleod, Autophagy: cellular and molecular mechanisms. J Pathol, 2010. 221(1): p. 3-12.
35. Pilar Sarah Acevo-Rodriguez , et al., Autophagy Regulation by the Translation Machinery and Its Implications in Cancer. Front Oncol, 2020. 10: p. 322.
36. Niklas Gremke, et al., mTOR-mediated cancer drug resistance suppresses autophagy and generates a druggable metabolic vulnerability. Nat Commun, 2020. 11(1): p. 4684.
37. Mohd Ishaq, et al., Autophagy in cancer: Recent advances and future directions. Semin Cancer Biol, 2020. 66: p. 171-181.
38. Sibi Raj, et al., Molecular mechanisms of interplay between autophagy and metabolism in cancer. Life Sci, 2020. 259: p. 118184.
39. Xin Wen and Daniel J. Klionsky, At a glance: A history of autophagy and cancer. Semin Cancer Biol, 2020. 66: p. 3-11.
40. Hui-Min Zhang, et al., MKL1/miR-5100/CAAP1 loop regulates autophagy and apoptosis in gastric cancer cells. Neoplasia, 2020. 22(5): p. 220-230.
41. Fanhua Kong, et al., Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells. The International Journal of Biochemistry & Cell Biology, 2020. 122: p. 105731.
42. Yu Geon Lee, et al., Androgen-induced expression of DRP1 regulates mitochondrial metabolic reprogramming in prostate cancer. Cancer Lett, 2020. 471: p. 72-87.
43. Ian A. Cree, Principles of Cancer Cell Culture, in Cancer Cell Culture: Methods and Protocols, Methods in Molecular Biology, 2011. 731:p. 13-26.
44. Gemma L. Kelly, and Andreas Strasser, Toward Targeting Antiapoptotic MCL-1 for Cancer Therapy. Annual Review of Cancer Biology, 2020. 4: p. 299-313.
45. J. Marie Hardwick and Lucian Soane, Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol, 2013. 5(2).
46. Keisuke Kuida, Caspase-9. Int J Biochem Cell Biol, 2000. 32(2): p. 121-124.
47. P Li, et al., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997. 91(4): p. 479-89.
48. E S Alnemri, et al., Human ICE/CED-3 protease nomenclature. Cell, 1996. 87(2): p. 171.
49. Jean-Philippe Gagne, et al., Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase. J Proteome Res, 2009. 8(2): p. 1014-1029.
50. Sharon Tran, W.D. Fairlie, and E.F. Lee, BECLIN1: Protein Structure, Function and Regulation. Cells, 2021. 10(6): p. 1522.
51. Sebastian Wesselborg and Bjorn Stork, Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci, 2015. 72(24): p. 4721-4757.
52. Xiaohua Li, Shikun He, Binyun Ma, Autophagy and autophagy-related proteins in cancer. Molecular Cancer, 2020. 19(1): p. 12.
53. Wei Jing Liu, et al., p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cellular & Molecular Biology Letters, 2016. 21(1): p. 29.
54. Isei Tanida, Takashi Ueno and Eiki Kominami, LC3 and Autophagy. Methods Mol Biol, 2008. 445: p. 77-88.
55. Azhar Rasul, et al., Reactive oxygen species mediate isoalantolactone-induced apoptosis in human prostate cancer cells. Molecules, 2013. 18(8): p. 9382-9396.
56. Rebecca S Y Wong, Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res, 2011. 30(1): p. 87.
57. Xuebo Xu, Yueyang Lai, Zi-Chun Hua, Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep, 2019. 39(1).
58. Dongdong Sun, et al., Trifolirhizin induces autophagy-dependent apoptosis in colon cancer via AMPK/mTOR signaling. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 174.
59. Malene Hansen, David C Rubinsztein, David W Walker , Autophagy as a promoter of longevity: insights from model organisms. Nature Reviews Molecular Cell Biology, 2018. 19(9): p. 579-593.
60. Ke Peng, et al., Restoration of the ATG5?dependent autophagy sensitizes DU145 prostate cancer cells to chemotherapeutic drugs. Oncology Letters, 2021. 22(3): p. 638.
61. Alicia M. Blessing, et al., Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression. Autophagy, 2017. 13(3): p. 506-521.
62. Petros X E Mouratidis, et al., Differential role of apoptosis and autophagy associated with anticancer effect of lupulone (hop β-acid) derivatives on prostate cancer cells. Anticancer Agents Med Chem, 2014. 14(8): p. 1169-1178.
63. Anna Dubrovska, et al., The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proceedings of the National Academy of Sciences, 2009. 106(1): p. 268-273.
? |