博碩士論文 111827007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:200 、訪客IP:18.118.227.19
姓名 張曦文(Hsi-Wen Chang)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 麥克風陣列實踐空間高解析度毫米動態偵測-以生理訊號為例
(Super-resolution Sonar Imaging Using Sparse Microphone Array - A Feasibility Study of Vital Sign Sensing from simulation to reality)
相關論文
★ 非接觸式生理感測訊號分析研究★ 以磁振造影探究有病灶及無病灶神經疾病的自動偵測方法之開發
★ 複雜系統跨頻率耦合方法★ 不同麻醉深度之相位-振幅耦合量測及強度比較
★ 基於小波轉換之單一導程心電圖 重構12導程心電圖與分類★ 發展非侵入式即時交感神經活性指標之量測系統
★ 以靜息態功能性磁振造影探討頸動脈支架手術對於頸動脈狹窄病患大腦功能之影響★ 運用加速度計實現具多項生理功能量測之即時監控IOT平台
★ 功能性抗生物沾黏單層膜於冠狀動脈心血管疾病標誌物之檢測應用★ 創新利用模擬呼吸竇性心律不整之多階熵評估乙型腎上腺素阻斷劑在心衰竭病人之治療成效
★ 發展高抗干擾非接觸式生理訊號監測系統★ 應用特徵分群技術於非侵入式神經活性與行 為活動訊號之生物指標萃取
★ 應用模擬電生理及人工智慧技術創造跨臨床心電圖資料庫之心肌缺血成像模型★ 從同步鼾聲聲學分析和睡眠動態核磁共振成像進行靜態顱面測量和動態上呼吸道塌陷觀察,並探討其與阻塞性睡眠呼吸中止症嚴重程度的關聯。
★ 口內負壓睡眠裝置對於睡眠呼吸中止病人的轉譯研究- 針對解剖結構治療療效及策略探討★ 體外加強反搏治療裝置開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-17以後開放)
摘要(中) 綜觀動態偵測技術的發展,其應用場域不僅適用於姿勢捕捉和跌倒感測等人體動作和位置,還可用於監測生理訊號。在常見的生理訊號中,呼吸為偵測人體健康的一項重要指標,對於疾病的預防與診斷有很大的幫助。現今呼吸監測的方法多數需要使用穿戴式裝置,長時間連續監測下會因為活動空間受限導致行動不便外,也會產生皮膚刺激等問題。非接觸式呼吸監測的發展除了有益於進行長時間的監測,對於遠距醫療與居家檢測的助益也不可忽視。本研究目的在於利用麥克風陣列結合傳統波束成型與反卷積演算法的高解析度成像系統,應用於非接觸式呼吸波形偵測與動作偵測。
麥克風陣列應用於聲源定位技術是利用多個麥克風同步收集聲源訊號,透過分析聲波到達的時間和相位差異,將空間中的聲源可視化,實現聲源位置的精確定位。在常規聲源成像的演算法中,最常使用的為延遲求和波束成型法。
傳統延遲求和波束成型可以視為一種空間濾波器,凸顯目標方向的聲源並濾除其他方向的聲音干擾。然而,陣列中的麥克風間距與聲源頻率會影響旁瓣的大小與波束帶寬,定位的準確度與成像解析度也會因此受限。
本研究開發了一套非接觸式呼吸波形擷取與成像系統,使用二維十六通道麥克風陣列,並以中心頻率為16kHz之頻率調變連續波(frequency modulated continuous wave, FMCW)做為發射訊號,基於波束成型的聲學成像方法,將目標物反射之FMCW訊號聚焦在與陣列平行的XY平面。波束成型之成像可以視為未知聲源與點擴散函數(point spread function)卷積的結果,本研究利用麥克風陣列與聚焦平面之幾何距離建立點擴散函式,並使用fast iterative shrinkage-thresholding algorithms(FISTA)演算法求解反卷積的問題,取得高解析度成像並提高動態擷取之準確度。
摘要(英) The development of motion detection technology extends its applications beyond capturing movements such as posture and fall detection to include monitoring physiological signals. Among these signals, respiration is a crucial health indicator that significantly aids in disease prevention and diagnosis. Current methods for respiratory monitoring often rely on wearable devices, which can be inconvenient for prolonged use due to restricted mobility and skin allergy. The advancement of non-contact respiratory monitoring not only supports long-term surveillance but also contributes to telemedicine and home diagnostics. This study aims to utilize a microphone array combined with traditional beamforming and deconvolution algorithms in a high-resolution imaging system for non-contact respiratory waveform and motion detection.
Microphone arrays used in sound source localization technology synchronize multiple microphones to collect sound source signals. By analyzing time and phase differences of sound waves, the spatial location of sound sources can be visualized, achieving precise localization. The most commonly used algorithm in conventional sound source imaging is delay and sum beamforming.
Traditional delay-and-sum beamforming acts as a spatial filter, highlighting the direction of the target sound source while filtering out noise from other directions. However, spacing in the microphone array and the frequency of the sound source affect sidelobe levels and beamwidth, thereby limiting localization accuracy and imaging resolution.
This study developed a non-contact respiratory waveform capture and imaging system using a 2D 16-channel microphone array. We utilize Frequency Modulated Continuous Wave (FMCW) signals with a center frequency of 16kHz as the transmission signal. Based on beamforming acoustic imaging, the reflected FMCW signals from the target are focused on the XY plane parallel to the array. Furthermore, imaging via beamforming can be considered as the convolution of an unknown source and the point spread function (PSF). This research establishes the PSF using the geometric distance between the microphone array and the focusing plane and employs the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) to solve the deconvolution problem, achieving high-resolution imaging and enhancing motion capture accuracy.
關鍵字(中) ★ 波束成型
★ 麥克風陣列
★ 聲學成像
★ 點擴散函數
★ FISTA演算法
關鍵字(英) ★ frequency domain delay and sum beamforming
★ microphone array
★ acoustic imaging
★ point spread function
★ FISTA algorithm
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
第一章   緒論 1
1-1  序言 1
1-2  文獻探討 1
1-3  研究動機 3
1-4  本文架構 4
第二章   麥克風陣列訊號處理 5
2-1  前言 5
2-2  波束與陣列因子 5
2-3  波束成型(beamforming) 8
2-3-1 延遲求和波束成型(Delay and sum beamforming, DAS) 8
2-3-2 傳統波束成型(conventional beamforming, CBF) 8
2-4  反卷積(deconvolution) 11
第三章   基於時域波束成型之三維空間成像 14
3-1 預處理 15
3-2 時域波束成型三維空間成像 17
3-3 模擬結果分析 18
3-4 實驗結果分析 21
第四章   空間高解析度毫米動態偵測 26
4-1  預處理(Preprocessing) 26
4-2  頻域波束成型 28
4-3  高解析度成像 30
第五章   實驗結果分析 31
5-1  模擬結果分析 31
5-1-1 抗噪能力測試 31
5-1-2 不同座標系統之成像結果比較 33
5-2  實驗結果 38
5-2-1 實驗裝置 38
5-2-2 實驗結果分析 42
5-3  結論與未來展望 47
參考文獻 48
參考文獻 [1] V. Lubecke et al., "Remote sensing of vital signs with telecommunications signals," in World Congress on Medical Physics and Biomedical Engineering (WC2000), 2000.
[2] A. D. Droitcour, O. Boric-Lubecke, and G. T. Kovacs, "Signal-to-noise ratio in Doppler radar system for heart and respiratory rate measurements," IEEE transactions on microwave theory and techniques, vol. 57, no. 10, pp. 2498-2507, 2009.
[3] A. Droitcour, V. Lubecke, J. Lin, and O. Boric-Lubecke, "A microwave radio for Doppler radar sensing of vital signs," in 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No. 01CH37157), 2001, vol. 1: IEEE, pp. 175-178.
[4] P. Nguyen, X. Zhang, A. Halbower, and T. Vu, "Continuous and fine-grained breathing volume monitoring from afar using wireless signals," in IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, 2016: IEEE, pp. 1-9.
[5] J. Salmi and A. F. Molisch, "Propagation parameter estimation, modeling and measurements for ultrawideband MIMO radar," IEEE Transactions on Antennas and Propagation, vol. 59, no. 11, pp. 4257-4267, 2011.
[6] I. Seflek, Y. E. Acar, and E. Yaldiz, "Small motion detection and non-contact vital signs monitoring with continuous wave doppler radars," Elektronika ir elektrotechnika, vol. 26, no. 3, pp. 54-60, 2020.
[7] J. Tu, T. Hwang, and J. Lin, "Respiration rate measurement under 1-D body motion using single continuous-wave Doppler radar vital sign detection system," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 6, pp. 1937-1946, 2016.
[8] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller, "Smart homes that monitor breathing and heart rate," in Proceedings of the 33rd annual ACM conference on human factors in computing systems, 2015, pp. 837-846.
[9] M. Alizadeh, G. Shaker, J. C. M. De Almeida, P. P. Morita, and S. Safavi-Naeini, "Remote monitoring of human vital signs using mm-wave FMCW radar," IEEE Access, vol. 7, pp. 54958-54968, 2019.
[10] H. Abdelnasser, K. A. Harras, and M. Youssef, "UbiBreathe: A ubiquitous non-invasive WiFi-based breathing estimator," in Proceedings of the 16th ACM international symposium on mobile ad hoc networking and computing, 2015, pp. 277-286.
[11] J. Liu, Y. Wang, Y. Chen, J. Yang, X. Chen, and J. Cheng, "Tracking vital signs during sleep leveraging off-the-shelf wifi," in Proceedings of the 16th ACM international symposium on mobile ad hoc networking and computing, 2015, pp. 267-276.
[12] X. Wang, C. Yang, and S. Mao, "TensorBeat: Tensor decomposition for monitoring multiperson breathing beats with commodity WiFi," ACM Transactions on Intelligent Systems and Technology (TIST), vol. 9, no. 1, pp. 1-27, 2017.
[13] X. Wang, R. Huang, and S. Mao, "SonarBeat: Sonar phase for breathing beat monitoring with smartphones," in 2017 26th International Conference on Computer Communication and Networks (ICCCN), 2017: IEEE, pp. 1-8.
[14] R. Nandakumar, S. Gollakota, and N. Watson, "Contactless sleep apnea detection on smartphones," in Proceedings of the 13th annual international conference on mobile systems, applications, and services, 2015, pp. 45-57.
[15] G. LLC, "Turn on ultrasound sensing.," 2019. [Online]. Available: https://support.google.com/googlenest/answer/9509981?hl=en.
[16] G. LLC. "How ultrasound sensing makes nest displays more accessible." https://blog.google/products/google-nest/ultrasound-sensing/ (accessed.
[17] F. Adib, C.-Y. Hsu, H. Mao, D. Katabi, and F. Durand, "Capturing the human figure through a wall," ACM Transactions on Graphics (TOG), vol. 34, no. 6, pp. 1-13, 2015.
[18] W. Mao, M. Wang, and L. Qiu, "Aim: Acoustic imaging on a mobile," in Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, 2018, pp. 468-481.
[19] Y. R. Zheng, R. A. Goubran, and M. El-Tanany, "Experimental evaluation of a nested microphone array with adaptive noise cancellers," IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 3, pp. 777-786, 2004.
[20] M. Polichetti, F. Varray, B. Gilles, J.-C. Béra, and B. Nicolas, "Use of the cross-spectral density matrix for enhanced passive ultrasound imaging of cavitation," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, no. 4, pp. 910-925, 2020.
[21] D. R. Gennaro and G. Z. Z. Geoff, "A postprocessing method for spatially variant point spread function compensation," 2010.
[22] O. Lylloff, E. Fernández-Grande, F. Agerkvist, J. Hald, E. Tiana Roig, and M. S. Andersen, "Improving the efficiency of deconvolution algorithms for sound source localization," The journal of the acoustical society of America, vol. 138, no. 1, pp. 172-180, 2015.
[23] A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183-202, 2009.
[24] J. Ma, K. Karadayi, M. Ali, and Y. Kim, "Software-based ultrasound phase rotation beamforming on multi-core DSP," in 2011 IEEE International Ultrasonics Symposium, 2011: IEEE, pp. 503-506.
[25] A. Wang, D. Nguyen, A. R. Sridhar, and S. Gollakota, "Using smart speakers to contactlessly monitor heart rhythms," Communications biology, vol. 4, no. 1, pp. 1-12, 2021.
[26] MiniDSP. "UMA-16 v2 USB mic array." https://www.minidsp.com/products/usb-audio-interface/uma-16-microphone-array (accessed.
[27] X. Jiang and S. Wu, "Parameter estimation for chirp signals using the spectrum phase," IET Radar, Sonar & Navigation, vol. 14, no. 12, pp. 2039-2044, 2020.
指導教授 羅孟宗(Men-Tzung Lo) 審核日期 2024-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明