參考文獻 |
參考文獻
[1] 台北榮民總醫院 腦瘤(brain tumors)治療準則
https://wd.vghtpe.gov.tw/hemaonco/files/Guide_BrainCA.pdf
[2] 中華民國 110 年癌症登記報告 CANCER REGISTRY ANNUAL REPORT,
2021 TAIWAN, 中華民國 112 年 12 月出版
[3] W. Wang, C. Chen, M. Ding, H. Yu, S. Zha, and J. Li, “TransBTS: Multimodal
brain tumor segmentation using transforme,” in Proc. Int. Conf. Med. Image Comput.
Comput.-Assist. Interv., 2021, pp. 109–119.
[4] F. Isensee, P. F. Jäger, P. M. Full, P. Vollmuth, and K. H. Maier-Hein, “nnU-Net
for brain tumor segmentation,” inProc. Int. MICCAI Brainlesion Workshop, 2021, pp.
118–132.
[5] Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep residual u-net,” IEEE
Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 749–753, May 2018.
[6] Z. Zhou,M.M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A
nested U-Net architecture for medical image segmentation,” in Proc. Deep Learn.
Med. Image Anal. Multimodal Learn. Clin. Decis. Support, 2018, pp. 3–11.
[7] R. McKinley, M. Rebsamen, R. Meier, and R. Wiest, “Triplanar ensemble of 3D-
to-2D CNNs with label-uncertainty for brain tumor segmentation,” in Proc. Int.
MICCAI Brainlesion Workshop, 2020, pp. 379–387.
[8] A. Vaswani et al., “Attention is all you need,” in Proc. 31st Neural Inf. Process.
Syst., 2017, pp. 5998–6008.
[9] C. Liu et al., “Auto-deeplab: Hierarchical neural architecture search for semantic
image segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 82–92.
[10] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1–9.
[11] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7794–7803.
[12] J. Dai et al., “Deformable convolutional networks,” in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 764–773.
[13] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected CRFs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp.
834–848, Apr. 2018.
[14] L. Chi, B. Jiang, and Y. Mu, “Fast Fourier convolution,” in Proc. 34th Int. Conf.
Neural Inf. Process. Syst., 2020, pp. 4479–4488.
[15] L. Chi, G. Tian, Y. Mu, L. Xie, and Q. Tian, “Fast non-local neural networks
with spectral residual learning,” in Proc. 27th Assoc. Comput. Machinery Multimedia,
2019, pp. 2142–2151.
[16] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” in Proc. 3rd Int. Conf. Learn. Representations, 2015.
[17] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image
recognition at scale,” in Proc. Int. Conf. Learn. Representations, 2020.
[18] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2015, pp. 3431–3440.
[19] J. Chen et al., “Transunet: Transformers make strong encoders for medical image
segmentation,” 2021, arXiv:2102.04306.
[20] M. Dobko, D.-I. Kolinko, O. Viniavskyi, and Y. Yelisieiev, “Combining CNNs
With transformer for multimodal 3D MRI brain tumor segmentation with self-
supervised pretraining,” 2021, arXiv:2110.07919.
[21] N. Watters et al., “Visual interaction networks: Learning a physics simulator
from video,” in Proc. 31st Int. Neural Inf. Process. Syst., 2017, pp. 4542–4550.
[22] M. K. Abd-Ellah, A. I. Awad, A. A. M. Khalaf, and H. F. A. Hamed, “Two-
phase multi-model automatic brain tumour diagnosis system from magnetic resonance
images using convolutional neural networks,” J. Image Video Proc., vol. 97, pp. 1–10,
Sep. 2018.
[23] M. K. Abd-Ellah, A. I. Awad, A. A. M. Khalaf, and H. F. A. Hamed, “A review
on brain tumor diagnosis from MRI images: Practical implications, key achievements,
and lessons learned,” Magn. Reson. Imag., vol. 61, pp. 300–318, Sep. 2019.
[24] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond euclidean data,” IEEE Signal Process.
Mag., vol. 34, no. 4, pp. 18–42, Jul. 2017.
[25] K. Gopinath, C. Desrosiers, and H. Lombaert, “Graph domain adaptation for
alignment-invariant brain surface segmentation,” in Proc. Uncertainty Safe Utilization
Mach. Learn. Med. Imag., Graphs Biomed. Image Anal., 2020, pp. 152–163.
[26] J. Liu et al., “Identification of early mild cognitive impairment using multimodal
data and graph convolutional networks,” BMC Bioinf., vol. 21, no. 6, pp. 1–12, 2020.
[27] S.-J. Huang, C.-C. Chen, Y. Kao, and H. H.-S. Lu, “Feature-aware unsupervised
lesion segmentation for brain tumor images using fast data density functional
transform,” Sci. Rep., vol. 13, no. 1, Aug. 2023, Art. no. 13582.
[28] C.-C. Chen, H.-H. Juan, M.-Y. Tsai, and H. H.-S. Lu, “Unsupervised learning
and pattern recognition of biological data structures with density functional theory
and machine learning,” Sci. Rep., vol. 8, no. 1, Jan. 2018, Art. no. 557.
[29] C.-C. Chen, M.-Y. Tsai, M.-Z. Kao, and H. H.-S. Lu, “Medical image
segmentation with adjustable computational complexity using data density
functionals,” Appl. Sci.-Basel, vol. 9, no. 8, Apr. 2019, Art. no. 1718.
[30] Z.-J. Su, T.-C. Chang, Y.-L. Tai, S.-J. Chang, and C.-C. Chen, “Attention U-net
with dimension-hybridized fast data density functional theory for automatic brain
tumor image segmentation,” in Proc. Int. MICCAI Brainlesion Workshop, 2021, pp.
81–92.
[31] Y.-L. Tai, S.-J. Huang, C.-C. Chen, and H. H.-S. Lu, “Computational complexity
reduction of neural networks of brain tumor image segmentation by introducing
fermi–Dirac correction functions,” Entropy, vol. 23, no. 2, Feb. 2021, Art. no. 223.
[32] J. Long, E. Shelhamer, T. Darrell, Fully convolutional networks for semantic
segmentation,in: Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp.3431–3440.
[33] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for
biomedical imagesegmentation, in: International Conference on Medical image
computing and computer-assisted intervention, Springer, 2015, pp. 234–241.
[34] F. Isensee, P. F. Jäger, P. M. Full, P. Vollmuth, and K. H. Maier-Hein, “nnU-Net
for brain tumor segmentation,” inProc. Int. MICCAI Brainlesion Workshop, 2021, pp.
118–132.
[35] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-
Net: Learning dense volumetric segmentation from sparse annotation,” in Proc. Int.
Conf. Med. Image Comput. Comput.-Assist. Interv., 2016, pp. 424–432.
[36] B. H. Menze et al., “The multimodal brain tumor image segmentation benchmark
(BRATS),” IEEE Trans. Med. Imag., vol. 34, no. 10, pp. 1993–2024, Oct. 2015.
[37] S. Bakas et al., “Advancing the cancer genome atlas glioma MRI collections with
expert segmentation labels and radiomic features,” Sci. Data, vol. 4, Sep. 2017, Art.
no. 170117.
[38] S. Bakas et al., “Identifying the best machine learning algorithms for brain tumor
segmentation, progression assessment, and overall survival prediction in the BRATS
challenge,” 2018, arXiv:1811.02629.
[39] S. Bakas et al., “Segmentation labels and radiomic features for the preoperative
scans of the TCGA-GBM collection,” The Cancer Imaging Archive, 2017. [Online].
Available:
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282666
[40] S. Bakas et al., “Segmentation labels and radiomic features for the pre-operative
scans of the TCGA-LGG collection,” The Cancer Imaging Archive, 2017. [Online].
Available:
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282668
[41] U. Baid et al., “The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain
tumor segmentation and radiogenomic classification,” 2021, arXiv:2107.02314.
[42] J. Phys. Chem. 1996, 100, 31, 12974–12980 Publication Date:August 1, 1996
https://doi.org/10.1021/jp960669l Copyright © 1996 American Chemical Society
RIGHTS &PERMISSIONS
[43] Y. Zhou, W. Huang, P. Dong, Y. Xia, and S. Wang, “D-UNet: A dimension-
fusion U shape network for chronic stroke lesion segmentation,” IEEE/ACM Trans.
Comput. Biol. Bioinf., vol. 18, no. 3, pp. 940–950, May/Jun. 2021.
[44] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional
neural networks for resource efficient inference,” in Proc. Int. Conf. Learn.
Representations, 2017, pp. 1–17.
[45] F. Isensee, P. F. Jäger, P. M. Full, P. Vollmuth, and K. H. Maier-Hein, “nnU-Net
for brain tumor segmentation,” inProc. Int. MICCAI Brainlesion Workshop, 2021, pp.
118–132. |