參考文獻 |
1. LeBlanc, A., et al., Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact, 2000. 1(2): p. 157-60.
2. Shen, M. and W.H. Frishman, Effects of spaceflight on cardiovascular physiology and health. Cardiology in review, 2019. 27(3): p. 122-126.
3. Rambaut, P.C. and R.S. Johnston, Prolonged weightlessness and calcium loss in man. Acta astronautica, 1979. 6(9): p. 1113-1122.
4. Spatz, J., et al., Serum sclerostin increases in healthy adult men during bed rest. The Journal of Clinical Endocrinology & Metabolism, 2012. 97(9): p. E1736-E1740.
5. Monticone, M., et al., Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure. Journal of cellular biochemistry, 2010. 111(2): p. 442-452.
6. Uda, Y., et al., Global transcriptomic analysis of a murine osteocytic cell line subjected to spaceflight. The FASEB Journal, 2021. 35(5): p. e21578.
7. Zhang, S., et al., Disparity in the effect of partial gravity simulated using a new apparatus on different rat hindlimb muscles. Life Sciences in Space Research, 2024. 43: p. 54-67.
8. Kraft, T.F., J.J. van Loon, and J.Z. Kiss, Plastid position in Arabidopsis columella cells is similar in microgravity and on a random-positioning machine. Planta, 2000. 211: p. 415-422.
9. Rucci, N., et al., Characterization of the osteoblast?like cell phenotype under microgravity conditions in the NASA?approved rotating wall vessel bioreactor (RWV). Journal of cellular biochemistry, 2002. 85(1): p. 167-179.
10. Pardo, S.J., et al., Simulated microgravity using the Random Positioning Machine inhibits differentiation and alters gene expression profiles of 2T3 preosteoblasts. American Journal of Physiology-Cell Physiology, 2005. 288(6): p. C1211-C1221.
11. Patel, M.J., et al., Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine. Journal of cellular biochemistry, 2007. 101(3): p. 587-599.
12. Zhang, X., et al., Bioinformatic analysis of the RNA expression patterns in microgravity-induced bone loss. Frontiers in Genetics, 2022. 13: p. 985025.
13. Rochefort, G.Y. and C.L. Benhamou, Osteocytes are not only mechanoreceptive cells. International journal for numerical methods in biomedical engineering, 2013. 29(10): p. 1082-1088.
14. Krane, S.M., Identifying genes that regulate bone remodeling as potential therapeutic targets. The Journal of experimental medicine, 2005. 201(6): p. 841-843.
15. Liu, Z., et al., The mechanotransduction signaling pathways in the regulation of osteogenesis. International Journal of Molecular Sciences, 2023. 24(18): p. 14326.
16. Camirand, A., et al., The role of parathyroid hormone-related protein (PTHrP) in osteoblast response to microgravity: mechanistic implications for osteoporosis development. PLoS One, 2016. 11(7): p. e0160034.
17. Cabibbo, A., et al., ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. Journal of Biological Chemistry, 2000. 275(7): p. 4827-4833.
18. Gess, B., et al., The cellular oxygen tension regulates expression of the endoplasmic oxidoreductase ERO1?Lα. European journal of biochemistry, 2003. 270(10): p. 2228-2235.
19. Jackson, B., et al., Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Human genomics, 2011. 5: p. 1-21.
20. Garrido, C., et al., HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell cycle, 2003. 2(6): p. 578-583.
21. Cassandri, M., et al., Zinc-finger proteins in health and disease. Cell death discovery, 2017. 3(1): p. 1-12.
22. Yang, W., et al., The emerging role of Hippo signaling pathway in regulating osteoclast formation. Journal of cellular physiology, 2018. 233(6): p. 4606-4617.
23. Tanaka, K.-i., et al., Role of osteoglycin in the linkage between muscle and bone. Journal of Biological Chemistry, 2012. 287(15): p. 11616-11628.
24. Alfaro, M.P., et al., sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self-renewal promoting engraftment and myocardial repair. Journal of Biological Chemistry, 2010. 285(46): p. 35645-35653.
25. Robinson, J.A., et al., Wnt/β-catenin signaling is a normal physiological response to mechanical loading in bone. Journal of Biological Chemistry, 2006. 281(42): p. 31720-31728.
26. Ying, J., et al., The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clinical cancer research, 2005. 11(18): p. 6442-6449.
27. Shinde, V., et al., Simulated microgravity modulates differentiation processes of embryonic stem cells. Cellular Physiology and Biochemistry, 2016. 38(4): p. 1483-1499.
28. Takahashi, M., et al., Roles of the mesenchymal stromal/stem cell marker Meflin/Islr in cancer fibrosis. Frontiers in Cell and Developmental Biology, 2021. 9: p. 749924.
29. Binlateh, T., C. Leethanakul, and P. Thammanichanon, Involvement of RAMP1/p38MAPK signaling pathway in osteoblast differentiation in response to mechanical stimulation: a preliminary study. Journal of Orthopaedic Surgery and Research, 2024. 19(1): p. 330.
30. Jin, J., et al., Reticulocalbin 3 deficiency in alveolar epithelium exacerbated bleomycin-induced pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2018. 59(3): p. 320-333.
31. Rucci, N., et al., The glycosaminoglycan-binding domain of PRELP acts as a cell type–specific NF-κB inhibitor that impairs osteoclastogenesis. Journal of Cell Biology, 2009. 187(5): p. 669-683.
32. Li, H., et al., PRELP (proline/arginine-rich end leucine-rich repeat protein) promotes osteoblastic differentiation of preosteoblastic MC3T3-E1 cells by regulating the β-catenin pathway. Biochemical and biophysical research communications, 2016. 470(3): p. 558-562.
33. Efeyan, A., et al., RagA, but not RagB, is essential for embryonic development and adult mice. Developmental cell, 2014. 29(3): p. 321-329.
34. Chen, J. and F. Long, mTORC1 signaling promotes osteoblast differentiation from preosteoblasts. PloS one, 2015. 10(6): p. e0130627.
35. Huang, K. and D.C. Fingar. Growing knowledge of the mTOR signaling network. in Seminars in cell & developmental biology. 2014. Elsevier.
36. Xu, Y., et al., PAMM: a redox regulatory protein that modulates osteoclast differentiation. Antioxidants & redox signaling, 2010. 13(1): p. 27-37.
37. Sandhu, S., et al., AOP Report: Development of an adverse outcome pathway for deposition of energy leading to bone loss. Environmental and Molecular Mutagenesis, 2023.
38. Priyanka, P.P. and S. Yenugu, Coiled-coil domain-containing (CCDC) proteins: functional roles in general and male reproductive physiology. Reproductive Sciences, 2021. 28(10): p. 2725-2734.
39. Stein, T., et al., Energy metabolism pathways in rat muscle under conditions of simulated microgravity. The Journal of nutritional biochemistry, 2002. 13(8): p. 471-478.
40. Baldwin, K.M., R.E. Herrick, and S.A. McCue, Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity. Journal of applied physiology, 1993. 75(6): p. 2466-2470.
41. Wang, M., J. Zhang, and N. Gong, Role of the PI3K/Akt signaling pathway in liver ischemia reperfusion injury: A narrative review. Annals of palliative medicine, 2022. 11(2): p. 80617-80817.
42. Shi, F., et al., Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PloS one, 2012. 7(7): p. e40365.
43. Meyers, V.E., et al., Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. Journal of cellular biochemistry, 2004. 93(4): p. 697-707.
44. Zhivodernikov, I., A. Ratushnyy, and L. Buravkova, Simulated microgravity remodels extracellular matrix of osteocommitted mesenchymal stromal cells. International Journal of Molecular Sciences, 2021. 22(11): p. 5428.
45. Fan, C., et al., Activation of Focal Adhesion Kinase Restores Simulated Microgravity-Induced Inhibition of Osteoblast Differentiation via Wnt/Β-Catenin Pathway. International Journal of Molecular Sciences, 2022. 23(10): p. 5593.
46. Strauch, S.M., et al., Current knowledge about the impact of microgravity on the proteome. Expert Review of Proteomics, 2019. 16(1): p. 5-16.
47. Rozhkov, S.V., et al., The Role of Glycogen Synthase Kinase-3 in the Regulation of Ribosome Biogenesis in Rat Soleus Muscle under Disuse Conditions. International Journal of Molecular Sciences, 2022. 23(5): p. 2751.
48. Rozhkov, S.V., et al., Temporal changes in the markers of ribosome biogenesis in rat soleus muscle under simulated microgravity. Acta Astronautica, 2021. 186: p. 252-258.
49. Hughes-Fulford, M. and M.L. Lewis, Effects of microgravity on osteoblast growth activation. Experimental cell research, 1996. 224(1): p. 103-109.
50. Suresh, M.V., et al., Hypoxia-inducible factor 1α and its role in lung injury: adaptive or maladaptive. Inflammation, 2023. 46(2): p. 491-508.
51. Drager, J., E.J. Harvey, and J. Barralet, Hypoxia signalling manipulation for bone regeneration. Expert reviews in molecular medicine, 2015. 17: p. e6.
52. Blaber, E.A., et al., Microgravity induces pelvic bone loss through osteoclastic activity, osteocytic osteolysis, and osteoblastic cell cycle inhibition by CDKN1a/p21. PloS one, 2013. 8(4): p. e61372.
53. Farr, J.N. and S. Khosla, Cellular senescence in bone. Bone, 2019. 121: p. 121-133.
54. Paul, A.M., et al., Neutrophil-to-lymphocyte ratio: a biomarker to monitor the immune status of astronauts. Frontiers in Immunology, 2020. 11: p. 564950.
55. Li, N., et al., Microgravity-induced alterations of inflammation-related mechanotransduction in endothelial cells on board SJ-10 satellite. Frontiers in physiology, 2018. 9: p. 1025.
56. Mundy, G.R., Osteoporosis and inflammation. Nutrition reviews, 2007. 65(suppl_3): p. S147-S151.
57. Bhat, G., H. Yang, and R. Sridaran, Simulated conditions of microgravity suppress progesterone production by luteal cells of the pregnant rat. Journal of gravitational physiology: a journal of the International Society for Gravitational Physiology, 2001. 8(2): p. 57-66.
58. Lang, A., et al., Acute and short-term fluctuations in gravity are associated with changes in circulatory plasma protein levels. npj Microgravity, 2024. 10(1): p. 25. |