博碩士論文 111852013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.133.136.95
姓名 吳芳儀(Fang-yi Wu)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 基因分析應用於肺癌研究
(Application of Genetic Analysis in Lung Cancer Research)
相關論文
★ 整合深度學習方法預測年齡以及衰老基因之研究★ 運用深度學習方法預測阿茲海默症惡化與腦中風手術存活
★ 運用深度學習方法預測癌症種類及存活死亡與治癒復發★ 基於檢驗數值的糖尿病腎病變預測模型
★ 機械循環拉伸對肺癌細胞功能的影響之研究★ 整合多種基因組型態資料預測肺腺癌患者存活之研究
★ 以系統生物學策略探討臍帶血來源之造血幹細胞分子調控網路★ TP53突變對具有EGFR突變的非小細胞肺癌患者帶來的影響
★ 以系統生物學方法探討肺腺癌抗藥性成因★ 機械循環拉伸力對3D培養肺癌細胞之影響
★ PM2.5對人類心肺細胞的影響★ 尼曼匹克症轉錄體學研究
★ 體外仿生肺肝纖維化3D模型研究★ 肝纖維化細胞與動物模型以轉錄體資料分析比較
★ 基於深度學習之皮膚病兆切割之研究★ 體外仿生心臟衰竭三維模型研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 肺癌是全球致命性最高的癌症之一,每年導致數百萬人死亡。非小細胞肺癌(NSCLC)佔所有肺癌病例的85%,而肺腺癌(LUAD)是NSCLC中最常見的類型。隨著次世代基因定序(NGS)技術的發展,對肺腺癌相關基因的研究逐漸深入。基因組學數據顯示,特定基因的異常表達與肺癌的發展和預後密切相關。癌症基因組圖譜(TCGA)等大型基因組計畫為研究這些基因提供了豐富的數據資源。隨著醫療大數據和基因定序技術的進步,識別與肺癌相關的高表達基因及其對患者存活率的影響變得至關重要。本研究旨在利用 UALCAN 平台和 TCGA 數據庫,提供了對 TCGA 數據的便捷訪問,用於癌症基因表達分析和存活分析。該平台支持基於轉錄組數據的基因表達量分析和 Kaplan-Meier 存活曲線生成。TCGA 數據庫提供了來自全球不同癌症樣本的基因組、轉錄組和臨床數據,是研究癌症相關基因異常表達的重要數據來源。研究方法包括基因表達分析和存活分析。分析特定高表達基因在肺腺癌中的角色,並探討這些基因與患者預後之間的關聯,以期可以快速地發現新的診斷標誌物和治療靶標。
摘要(英) 肺癌是全球致命性最高的癌症之一,每年導致數百萬人死亡。非小細胞肺癌(NSCLC)佔所有肺癌病例的85%,而肺腺癌(LUAD)是NSCLC中最常見的類型。隨著次世代基因定序(NGS)技術的發展,對肺腺癌相關基因的研究逐漸深入。基因組學數據顯示,特定基因的異常表達與肺癌的發展和預後密切相關。癌症基因組圖譜(TCGA)等大型基因組計畫為研究這些基因提供了豐富的數據資源。隨著醫療大數據和基因定序技術的進步,識別與肺癌相關的高表達基因及其對患者存活率的影響變得至關重要。本研究旨在利用 UALCAN 平台和 TCGA 數據庫,提供了對 TCGA 數據的便捷訪問,用於癌症基因表達分析和存活分析。該平台支持基於轉錄組數據的基因表達量分析和 Kaplan-Meier 存活曲線生成。TCGA 數據庫提供了來自全球不同癌症樣本的基因組、轉錄組和臨床數據,是研究癌症相關基因異常表達的重要數據來源。研究方法包括基因表達分析和存活分析。分析特定高表達基因在肺腺癌中的角色,並探討這些基因與患者預後之間的關聯,以期可以快速地發現新的診斷標誌物和治療靶標。
關鍵字(中) ★ 基因分析
★ 肺癌
關鍵字(英) ★ UALCAN
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 ix
一、緒論 1
1-1 研究背景、動機 1
1-2 肺癌特定基因突變 1
1-3 癌症基因組圖譜計畫(The Cancer Genome Atlas, TCGA) 2
1-4 基因現量、差異表達基因 2
1-5 UALCAN 分析平台(The University of ALabama at Birmingham CANcer data analysis Portal) 2
二、研究工具 4
2-1 UALCAN(University of ALabama CANcer portal)4
2-2 癌症基因組圖譜計畫(The Cancer Genome Atlas, TCGA) 4
三、研究方法 5
3-1 UALCAN數據採集 5
3-1-1數據分析 5
3-1-2顯示最高差異表達基因的熱圖 6
3-1-3 Kaplan–Meier 存活分析圖 6
3-2 分析流程 7
四、結果 9
4-1 用於基因表現分析的熱圖 9
4-2基因表達量 11
4-2-1 FAM83A基因表達量 11
4-2-2 S100P基因表達量 12
4-2-3 GJB2基因表達量 13
4-2-4 B3GNT3基因表達量 15
4-2-5 ANLN基因表達量 16
4-2-6 SLC2A1基因表達量 17
4-2-7 UBE2T 基因表達 18
4-2-8 PLK1基因表達量 19
4-2-9 RHOV基因表達量 21
4-2-10 CBLC基因表達量 22
4-2-11 CEP55基因表達量 23
4-2-12 CCNB2基因表達量 25
4-2-13 RRM2基因表達量 26
4-3 存活率與基因表達的關係 28
4-3-1 存活率與FAM83A表達水平的關係 28
4-3-2存活率與S100P表達水平的關係 28
4-3-3存活率與GJB2表達水平的關係 28
4-3-4存活率與B3GNT3表達水平的關係 29
4-3-5存活率與ANLN表達水平的關係 30
4-3-6存活率與SLC2A1表達水平的關係 30
4-3-7存活率與UBE2T表達水平的關係 30
4-3-8存活率與PLK1表達水平的關係 30
4-3-9存活率與RHOV表達水平的關係 32
4-3-10存活率與CBLC表達水平的關係 32
4-3-11存活率與CEP55表達水平的關係 32
4-3-12存活率與CCNB2表達水平的關係 32
4-3-13存活率與RRM2表達水平的關係 34
4-4 文獻探討 34
4-4-1 FAM83A 35
4-4-2 S100P 35
4-4-3 GJB2(Connexin 26)35
4-4-4 B3GNT3 36
4-4-5 ANLN(Anillin) 36
4-4-6 SLC2A1(GLUT1) 37
4-4-7 UBE2T 38
4-4-8 PLK1(Polo-like kinase 1) 38
4-4-9 RHOV 38
4-4-10 CBLC 39
4-4-11 CEP55(Centrosomal Protein 55)39
4-4-12 CCNB2(Cyclin B2)40
4-4-13 RRM2(Ribonucleotide Reductase M2)40
五、總結 42
六、參考文獻 43
參考文獻 1. Győrffy, B. (2024). Transcriptome-level discovery of survival-associated biomarkers and therapy targets in non-small-cell lung cancer. Br J Pharmacol, 181(3), 362-374. https://doi.org/10.1111/bph.16257
2. Georget, M., & Pisan, E. (2023). [Next Generation Sequencing (NGS) for beginners]. Rev Mal Respir, 40(4), 345-358. https://doi.org/10.1016/j.rmr.2023.01.026 (Approches diagnostiques basées sur le séquençage à haut débit.)
3. van Dijk, E. L., Jaszczyszyn, Y., Naquin, D., & Thermes, C. (2018). The Third Revolution in Sequencing Technology. Trends Genet, 34(9), 666-681. https://doi.org/10.1016/j.tig.2018.05.008
4. Tomczak, K., Czerwińska, P., & Wiznerowicz, M. (2015). The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn), 19(1a), A68-77. https://doi.org/10.5114/wo.2014.47136
5. Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., Creighton, C. J., Ponce-Rodriguez, I., Chakravarthi, B., & Varambally, S. (2017). UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia, 19(8), 649-658. https://doi.org/10.1016/j.neo.2017.05.002
6. Chandrashekar, D. S., Karthikeyan, S. K., Korla, P. K., Patel, H., Shovon, A. R., Athar, M., Netto, G. J., Qin, Z. S., Kumar, S., Manne, U., Creighton, C. J., & Varambally, S. (2022). UALCAN: An update to the integrated cancer data analysis platform. Ibid., 25, 18-27. https://doi.org/10.1016/j.neo.2022.01.001
7. Ji, H., Song, H., Wang, Z., Jiao, P., Xu, J., Li, X., Du, H., Wu, H., & Zhong, Y. (2021). FAM83A promotes proliferation and metastasis via Wnt/β-catenin signaling in head neck squamous cell carcinoma. Journal of translational medicine, 19, 1-13.
8. Zheng, Y.-W., Li, Z.-H., Lei, L., Liu, C.-C., Wang, Z., Fei, L.-R., Yang, M.-Q., Huang, W.-J., & Xu, H.-T. (2020). FAM83A promotes lung cancer progression by regulating the Wnt and Hippo signaling pathways and indicates poor prognosis. Frontiers in Oncology, 10, 180.
9. Zhang, M., Huo, C., Jiang, Y., Liu, J., Yang, Y., Yin, Y., & Qu, Y. (2021). AURKA and FAM83A are prognostic biomarkers and correlated with Tumor-infiltrating Lymphocytes in smoking related Lung Adenocarcinoma [Research Paper]. Journal of Cancer, 12(6), 1742-1754. https://doi.org/10.7150/jca.51321
10. iang, H., Hu, H., Tong, X., Jiang, Q., Zhu, H., & Zhang, S. (2012). Calcium-binding protein S100P and cancer: mechanisms and clinical relevance. Journal of cancer research and clinical oncology, 138, 1-9.
11. Hsu, Y.-L., Hung, J.-Y., Liang, Y.-Y., Lin, Y.-S., Tsai, M.-J., Chou, S.-H., Lu, C.-Y., & Kuo, P.-L. (2015). S100P interacts with integrin α7 and increases cancer cell migration and invasion in lung cancer. Oncotarget, 6(30), 29585.
12. Liu, Z., Xiao, Z., Wang, X., Zhang, L., & Zhang, Z. (2023). Ion channel gene GJB2 influences the intercellular communication by Up-regulating the SPP1 signaling pathway identified by the single-cell RNA sequencing in lung adenocarcinoma. Frontiers in Oncology, 13, 1146976.
13. Tang, Y., Zhang, Y.-J., & Wu, Z.-H. (2020). High GJB2 mRNA expression and its prognostic significance in lung adenocarcinoma: a study based on the TCGA database. Medicine, 99(14), e19054. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7220691/pdf/medi-99-e19054.pdf
14. Gao, L., Zhang, H., Zhang, B., Zhu, J., Chen, C., & Liu, W. (2018). B3GNT3 overexpression is associated with unfavourable survival in non-small cell lung cancer. Journal of Clinical Pathology, 71(7), 642-647. https://doi.org/10.1136/jclinpath-2017-204860
15. Leng, X., Wei, S., Mei, J., Deng, S., Yang, Z., Liu, Z., Guo, C., Deng, Y., Xia, L., & Cheng, J. (2021). Identifying the prognostic significance of B3GNT3 with PD-L1 expression in lung adenocarcinoma. Translational Lung Cancer Research, 10(2), 965.
16. Sun, Y., Liu, T., Xian, L., Liu, W., Liu, J., & Zhou, H. (2020). B3GNT3, a direct target of miR-149-5p, promotes lung cancer development and indicates poor prognosis of lung cancer. Cancer Management and Research, 2381-2391.
17. Suzuki, C., Daigo, Y., Ishikawa, N., Kato, T., Hayama, S., Ito, T., Tsuchiya, E., & Nakamura, Y. (2005). ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Research, 65(24), 11314-11325.
18. Tuan, N. M., & Lee, C. H. (2020). Role of anillin in tumour: from a prognostic biomarker to a novel target. Cancers, 12(6), 1600.
19. Zheng, H., Long, G., Zheng, Y., Yang, X., Cai, W., He, S., Qin, X., & Liao, H. (2022). Glycolysis-related SLC2A1 is a potential pan-cancer biomarker for prognosis and immunotherapy. Ibid., 14(21), 5344.
20. Cao, K., Ling, X., Jiang, X., Ma, J., & Zhu, J. (2022). Pan-cancer analysis of UBE2T with a focus on prognostic and immunological roles in lung adenocarcinoma. Respiratory Research, 23(1), 306.
21. Chen, Y., Hong, H., Wang, Q., Li, J., Zhang, W., Chen, T., & Li, P. (2021). NEDD4L-induced ubiquitination mediating UBE2T degradation inhibits progression of lung adenocarcinoma via PI3K-AKT signaling. Cancer Cell International, 21, 1-13.
22. Gunasekaran, P., Lee, G.-H., Hwang, Y. S., Koo, B.-C., Han, E. H., Bang, G., La, Y. K., Park, S., Kim, H. N., & Kim, M.-H. (2022). An investigation of Plk1 PBD inhibitor KBJK557 as a tumor growth suppressor in non-small cell lung cancer. Journal of Analytical Science and Technology, 13(1), 36.
23. Ibid., Gunasekaran, P., Lee, G.-H., Hwang, Y. S., Koo, B.-C., Han, E. H., Bang, G., La, Y. K., Park, S., Kim, H. N., Kim, M.-H., Bang, J. K., & Ryu, E. K. Ibid. https://doi.org/10.1186/s40543-022-00345-2
24. Van den Bossche, J., Domen, A., Peeters, M., Deben, C., De Pauw, I., Jacobs, J., De Bruycker, S., Specenier, P., Pauwels, P., & Vermorken, J. B. (2019). Radiosensitization of non-small cell lung cancer cells by the Plk1 inhibitor volasertib is dependent on the p53 status. Cancers, 11(12), 1893.
25. Chen, H., Xia, R., Jiang, L., Zhou, Y., Xu, H., Peng, W., Yao, C., Zhou, G., Zhang, Y., & Xia, H. (2021). Overexpression of RhoV promotes the progression and EGFR-TKI resistance of lung adenocarcinoma. Frontiers in Oncology, 11, 619013.
26. Liyasova, M. S., Ma, K., & Lipkowitz, S. (2015). Molecular pathways: Cbl proteins in tumorigenesis and antitumor immunity—opportunities for cancer treatment. Clinical cancer research, 21(8), 1789-1794.
27. Hong, S.-Y., Kao, Y.-R., Lin, Y.-P., Lee, M.-H., Wu, J.-Y., & Wu, C.-W. (2020). CBLC functions as a novel therapeutic target to enhance the efficacy of paclitaxel on EGFR wild-type lung adenocarcinoma by downregulating AURKA. Cancer Research, 80(16_Supplement), 4852-4852.
28. Li, G.-S., Zhang, W., Huang, W.-Y., He, R.-Q., Huang, Z.-G., Gan, X.-Y., Yang, Z., Dang, Y.-W., Kong, J.-L., & Zhou, H.-F. (2023). CEP55: an immune-related predictive and prognostic molecular biomarker for multiple cancers. BMC Pulmonary Medicine, 23(1), 166.
29. Fu, L., Wang, H., Wei, D., Wang, B., Zhang, C., Zhu, T., Ma, Z., Li, Z., Wu, Y., & Yu, G. (2020). The value of CEP55 gene as a diagnostic biomarker and independent prognostic factor in LUAD and LUSC. Plos one, 15(5), e0233283.
30. Li, G.-S., Zhang, W., Huang, W.-Y., He, R.-Q., Huang, Z.-G., Gan, X.-Y., Yang, Z., Dang, Y.-W., Kong, J.-L., & Zhou, H.-F. (2023). CEP55: an immune-related predictive and prognostic molecular biomarker for multiple cancers. BMC Pulmonary Medicine, 23(1), 166.
31. Rashidieh, B., Tria, S. M., & Khanna, K. K. (2022). Understanding the role of Cep55 in initiation and progression of cancers. Cancer Research, 82(12_Supplement), 6033-6033.
32. Qian, X., Song, X., He, Y., Yang, Z., Sun, T., Wang, J., Zhu, G., Xing, W., & You, C. (2015). CCNB2 overexpression is a poor prognostic biomarker in Chinese NSCLC patients. Biomedicine & Pharmacotherapy, 74, 222-227.
33. Li, M.-J., Yan, S.-B., Chen, G., Li, G.-S., Yang, Y., Wei, T., He, D.-S., Yang, Z., Cen, G.-Y., & Wang, J. (2022). Upregulation of CCNB2 and its perspective mechanisms in cerebral ischemic stroke and all subtypes of lung cancer: a comprehensive study. Frontiers in Integrative Neuroscience, 16, 854540.
34. Jin, C.-Y., Du, L., Nuerlan, A.-H., Wang, X.-L., Yang, Y.-W., & Guo, R. (2021). High expression of RRM2 as an independent predictive factor of poor prognosis in patients with lung adenocarcinoma. Aging (Albany NY), 13(3), 3518.
35. Rahman, M. A., Amin, A. R., Wang, D., Koenig, L., Nannapaneni, S., Chen, Z., Wang, Z., Sica, G., Deng, X., & Chen, Z. (2013). RRM2 regulates Bcl-2 in head and neck and lung cancers: a potential target for cancer therapy. Clinical cancer research, 19(13), 3416-3428.
36. Zhou, Z., Song, Q., Yang, Y., Wang, L., & Wu, Z. (2022). Comprehensive landscape of RRM2 with immune infiltration in pan-cancer. Cancers, 14(12), 2938.
指導教授 許藝瓊(Yi-Chiung Hsu) 審核日期 2024-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明