博碩士論文 112222033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.15.221.46
姓名 胡廷韋(Ting-Wei Hu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 Realization and Characterization of a Lumped-Element Josephson Parametric Amplifier
(Realization and Characterization of a Lumped-Element Josephson Parametric Amplifier)
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 石墨烯與超導金屬介面的電子穿隧行為★ 實驗觀測混合式單電子箱中之共同穿隧事件
★ 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測
★ 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測★ 二維電子氣體中量子點接觸 與量子點製作及量測
★ 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為★ 單一超導量子位元控制與狀態讀取
★ 超導量子干涉元件製作★ 工程化超導電路上三維腔量子電動力學系統
★ Characterizing single-qubit gate fidelity on superconducting qubits★ Virtual Potentials in Electric Circuit and Motion of Brownian Gyrator
★ 超導雙量子位元電路的實現★ Developing Flux-Driven Josephson Parametric Amplifer
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究提出並成功設計了集總式版本的約瑟夫森參量放大器(JPA),並進行了相關量測以驗證其性能。相比傳統的λ/4共振腔版本,所設計Lumped-element JPA顯著擴展了其頻寬,達到約20倍的提升,顯示出其在實際應用中的潛力。透過理論推導,我們確定了JPA設計的參數範圍,並驗證了關於JPA操作的基本表現,提出了新的設計目標與操作頻率範圍(pQ ? 5)。透過實際製作出並量測所設計的元件,我們發現本研究所設計的元件在附加噪聲和飽和功率方面仍有優化空間,未來的研究將集中於通過設計排除損失機制並藉由加入SQUID陣列來提升飽和功率。
摘要(英) This research proposes and successfully designs a lumped-element version of the Josephson Parametric Amplifier (JPA) and conducts relevant measurements to verify its performance. Compared to the traditional λ/4 resonator version, the designed lumped-element JPA significantly expands its bandwidth, achieving about a 20-fold increase, demonstrating its potential in practical applications. Through theoretical derivation, we determined the parameter range for JPA design and verified the basic performance of JPA operation, proposing new design goals and operational frequency range (pQe ? 5). Through the actual fabrication and measurement of the designed component, we found that the component designed in this research still has room for optimization in terms of added noise and saturation power. Future research will focus on eliminating loss mechanisms through design and enhancing saturation power by incorporating SQUID arrays.
關鍵字(中) ★ 約瑟夫參數放大器
★ 超導電路
★ 微波電路
關鍵字(英) ★ Josephson parametric amplifier
★ Superconducting circuit
★ Microwave circuit
論文目次 1序序序論論論1
1.1約瑟夫森參量放大器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2約約約瑟瑟瑟夫夫夫森森森參參參量量量放放放大大大器器器理理理論論論4
2.1約瑟夫森效應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2約瑟夫森方程式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3約瑟夫森電感值. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4超導量子干涉儀SQUID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5集總元件式放大電路簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6參量放大器理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6.1磁通量泵浦模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.2電流泵浦模型與杜芬振盪. . . . . . . . . . . . . . . . . . . . . . . . . 10
3集集集總總總元元元件件件式式式LC共共共振振振腔腔腔電電電路路路設設設計計計13
3.1電路參數簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2參數設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4實實實驗驗驗方方方法法法與與與結結結果果果討討討論論論18
4.1元件圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2實驗架設圖. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3元件參數擬和結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4放大效果表現. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.1優化操作點(Operationoptimization) . . . . . . . . . . . . . . . . . . . 22
4.4.2 Pumppowerdependence . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.3附加雜訊量測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.4飽和功率. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5結結結論論論31
參考文獻 [1] Z. R. Lin, K. Inomata, W. D. Oliver, K. Koshino, Y. Nakamura, J. S. Tsai, T. Yamamoto.
”Single-shot readout of a superconducting flux qubit with a flux-driven Josephson para
metric amplifier.” Appl. Phys. Lett. 103, 132602 (2013)
[2] S. Uchaikin, Kim, Jinmyeong, Kutlu, Caglar, Ivanov, Boris. ”Josephson Parametric
Amplifier based Quantum Noise Limited Amplifier Development for Axion Search Ex
periments in CAPP.” Front. Phys. 12, 10.3389 (2024)
[3] H. Chang, J. Y. Chang, Y. C. Chang, Y. Han Chang, Y. Hann Chang, C. H. Chen, C.
F. Chen, K. Y. Chen, Y. F. Chen, et al. ” First Results from the Taiwan Axion Search
Experiment with a Haloscope at 19.6μeV.” Phys. Rev. Lett. 129, 111802 (2022)
[4] T. Yamamoto, K. Inomata, M. Watanabe, K. Matsuba, T. Miyazaki, W. D. Oliver, Y.
Nakamura, J. S. Tsai. ”Flux-driven Josephson parametric amplifier.” Appl. Phys. Lett.
93, 042510 (2008)
[5] C. M. Caves. ”Quantum limits on noise in linear amplifiers.” Phys. Rev. D 26, 1817
(1982)
[6] A. Barone, G. Paterno. ”Physics and Applications of the Josephson Effect.” Chap. 11
(1982)
[7] T. Elo, T. S. Abhilash, M. R. Perelshtein, I. Lilja, E. V. Korostylev, P. J. Hakonen.”
Broadband lumped-element Josephson parametric amplifier with single-step lithogra
phy.” Appl. Phys. Lett. 114, 152601.(2019)
[8] J. Y. Mutus, T. C. White, E. Jeffrey, D. Sank, R. Barends, J. Bochmann, Yu Chen,
Z. Chen, B. Chiaro, A. Dunsworth, J. Kelly, A. Megrant, C. Neill, P. J. J. O’Malley,
P. Roushan, A. Vainsencher, J. Wenner, I. Siddiqi, R. Vijay, A. N. Cleland, John M.
Martinis. ”Design and characterization of a lumped element single-ended superconduct
ing microwave parametric amplifier with on-chip flux bias line.” Appl. Phys. Lett. 103,
122602 (2013)
[9] R. Kaufman, T. White, Mark I. Dykman, A. Iorio, G. Sterling, S. Hong, A. Opremcak,
A. Bengtsson, L. Faoro , Joseph C. Bardin , T. Burger, R. Gasca, O. Naaman. ”Joseph
son parametric amplifier with Chebyshev gain profile and high saturation.” Phys. Rev.
Applied 20, 054058 (2023)
[10] O. Naaman, D. G. Ferguson, A. Marakov, M. Khalil, W. F. Koehl, R. J. Epstein, “High
Saturation Power Josephson Parametric Amplifier with GHz Bandwidth.” 2019 IEEE
MTT-S International Microwave Symposium (IMS) (2017): 259-262.
[11] K. Peng, R. Poore, P. Krantz, D. E. Root, K. P. O’Brien, ”X-parameter based design
and simulation of Josephson traveling-wave parametric amplifiers for quantum comput
ing applications.” 2022 IEEE International Conference on Quantum Computing and
Engineering (2022)
[12] C. Eichler, A. Wallraf. ”Controlling the dynamic range of a Josephson parametric am
plifier.” Eichler and Wallraff EPJ QuantumTechnology (2014)
[13] D. Arweiler. ”Multi-SQUID Josephson Parametric Ampliers.” Master Thesis, Technical
University of Munich (2018)
[14] N. S. Chang. ”Design and Performance Verification of Flux-Driven Josephson Parametric
Amplifier.” National Central University (2023)
[15] C. Tannous. ”Superconductivity fundamentals and Applications.” Master. Milieux Dilec
triques et Magntiques, UBO Brest, France. (2016)
[16] Y. Yamamoto, K. Semba (eds.). ”Principles and Methods of Quantum Information Tech
nologies.” Lecture Notes in Physics 911.(2016)
[17] M. Hatridge, R. Vijay, D. H. Slichter, John Clarke, I. Siddiqi. ”Dispersive magnetometry
with a quantum limited SQUID parametric amplier.” Phys. Rev. B 83, 134501 (2011)
[18] V.E. Manucharyan, E. Boaknin, M. Metcalfe, R. Vijay, I. Siddiqi, M. Devoret. ”Mi
crowave bifurcation of a Josephson junction: Embedding-circuit requirements.” Phys.
Rev. B 76, 014524 (2007)
[19] R. Vijay, M. H. Devoret, I. Siddiqi. ”Invited Review Article: The Josephson bifurcation
amplifier.” Rev. Sci. Instrum. 80, 111101 (2009)
[20] A. W. Eddins. ”Superconducting Circuits for Quantum Metrology with Nonclassical
Light.” Doctor Thesis, University of California, Berkeley (2017)
[21] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M.
H. Devoret. ”RF-Driven Josephson Bifurcation Amplifier for Quantum Measurement.”
Phys. Rev. Lett. 93, 207002 (2004)
[22] A. Baust. ”Characterization of Flux-driven Josephson Parametric Ampliers.” Master
Thesis, Technical University of Munich (2010)
[23] W. Wustmann, V. Shumeiko. ”Parametric resonance in tunable superconducting cavi
ties.” Phys. Rev. B 87, 184501 (2013)
[24] M. A. Castellanos-Beltran. ”Development of a Josephson parametric amplifier for the
preparation and detection of nonclassical states of microwave fields.” Diss. University of
Colorado at Boulder, (2010)
[25] M. A. Castellanos-Beltran, K. W. Lehnert. ”Widely tunable parametric amplifier based
on a superconducting quantum interference device array resonator.” Appl. Phys. Lett.
91, 083509 (2007)
[26] M. A. Castellanos-Beltran, K. D. Irwin, L. R. Vale, G. C. Hilton and K. W. Lehnert.
”Bandwidth and Dynamic Range of a Widely Tunable Josephson Parametric Amplifier.”
Applied Superconductivity, IEEE Transactions (2009)
[27] J. Y. Mutus, T. C. White, E. Jeffrey, D. Sank, R. Barends, J. Bochmann, Yu Chen,
Z. Chen, B. Chiaro, A. Dunsworth, J. Kelly, A. Megrant, C. Neill, P. J. J. O’Malley,
P. Roushan, A. Vainsencher, J. Wenner, I. Siddiqi, R. Vijay, A. N. Cleland, John M.
Martinis. ”Design and characterization of a lumped element single-ended superconduct
ing microwave parametric amplifier with on-chip flux bias line.” Appl. Phys. Lett. 103,
122602. (2013)
指導教授 陳永富 審核日期 2025-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明