博碩士論文 112226034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.219.24.193
姓名 李淇合(CHI-HO,LEE)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 體積全像光學元件的折射率分布量測
(Refractive Index Distribution Measurement of Volume Holographic Optical Elements)
相關論文
★ N 倍繞射效率之體積全像多工技術★ 使用體積全像光學波導之可變焦無透鏡數位全像顯微鏡
★ 體積全像光學元件之波長及角度選擇性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-2-1以後開放)
摘要(中) 本研究針對體積全像光學元件(Volume Holographic Optical Element, VHOE)的品質檢測提出了一套新方法。透過設計與記錄體積全像光柵,結合光學繞射斷層掃描(Optical Diffraction Tomography, ODT)技術,實現了 VHOE 相位分布的準確量測及折射率分布重建。在有嚴格控制雜訊的研究結果表示,製程時間的長短對繞射效率的影響不大,但對體積全像光柵品質的影響是極大的。
本研究針對VHOE提出了有效的可視化雜訊分析方法,系統性地探討這些問題對全像光柵品質的影響,並據此提出製程優化建議。結果表明,透過控制製成環境與參數,可以顯著改善 VHOE 的折射率結構穩定性與光學性能。本方法為高品質 VHOE 的設計與應用提供了實用的分析工具與理論依據,對體積全像光學元件製造領域具有重要的參考價值。
摘要(英) This study proposes a novel method for quality inspection of Volume Holographic Optical Elements (VHOEs). By designing and recording volume holographic gratings combined with Optical Diffraction Tomography (ODT) technology, accurate measurement of the phase distribution and reconstruction of the refractive index distribution of VHOEs were achieved. Under strict noise control, the results indicate that the duration of the fabrication process has little effect on diffraction efficiency but significantly impacts the quality of the volume holographic grating.
This study introduces an effective visualization-based noise analysis method for VHOEs, systematically exploring the impact of these issues on grating quality and providing process optimization recommendations accordingly. The results demonstrate that by controlling the manufacturing environment and parameters, the refractive index structure stability and optical performance of VHOEs can be significantly improved. This method offers a practical analytical tool and theoretical basis for the design and application of high-quality VHOEs, providing valuable reference significance for the field of volume holographic optical element manufacturing.
關鍵字(中) ★ 折射率分佈量測
★ 體積全像光學元件
★ 光學繞射斷層掃描
關鍵字(英) ★ Refractive index distribution measurement
★ Volume Holographic Optical Elements
★ Optical Diffraction Tomography
論文目次 目錄
摘要 I
ABSTRACT II
致謝 III
目錄 V
圖目錄 VII
表目錄 XII
第一章 緒論 1
1-1 背景介紹 1
1-2 全像術之文獻回顧 2
1-3 光學繞射斷層掃描之文獻回顧 3
1-4 研究動機 4
1-5 論文架構 5
第二章 實驗理論 6
2-1 全像術 6
2-2 薄全像與厚全像 7
2-3 布拉格條件 9
2-4 耦合波理論 11
2-5 光學繞射斷層掃描框架 18
第三章 實驗方法及結果 21
3-1 VHOE製程 21
3-2 VHOE量測架構 23
3-2-1 光學元件的像差影響 24
3-3 折射率分布重建 28
3-4 製程時長對VHOE品質的影響 32
3-4-1 以三維折射率分布進行VOHIL掃描模擬 37
第四章 VHOE繞射光型模擬驗證 40
4-1 相位疊加法 40
4-2 模擬結果 43
4-4 反射式VHOE的折射率分布重建 50
4-4-1 基於VOHIL模擬的反射式VHOE折射率分布重建 56
4-4-2 以反射式模擬探討物鏡收光角度的影響 60
4-4-3 以近眼顯示器參數模擬物鏡NA的選擇 64
第五章 結論 69
參考文獻 70
中英文名詞對照表 76
參考文獻 參考文獻
1. J. P. Rolland, I. Kaya, K. P. Thompson, and O. Cakmakci, “57.3: Invited Paper: Head?worn Displays?Lens Design,” SID Symposium Digest of Technical Papers, 41(1), 855-858 (2010).
2. B. Foote and J. Melzer, “A history of helmet mounted displays,” presented at Display Technologies and Applications for Defense, Security, and Avionics IX; and Head- and Helmet-Mounted Displays XX, SPIE 9470, U.S. (2015).
3. J. E. Melzer and K. Moffitt, Head-Mounted Displays: Designing for the User, 1st eds. (McGraw-Hill, New York, 1997).
4. J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani and M. Ivkovic,” Augmented reality technologies, systems and applications,” Multimedia tools and applications, 51, 341-377 (2011).
5. R. T. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent advances in augmented reality,” IEEE Comput. Graph. Appl. 21, 34-47 (2001).
6. Azuma, T. Ronald, “A survey of augmented reality,” Presence: teleoperators & virtual environments, 6(4), 355-385 (1997).
7. B. Furht, Handbook of augmented reality, 1st eds. (Springer Science & Business Media, Berlin, 2011.)
8. C. Anthes, R. J. Garcia-Hernandez, M. Wiedemann and D. Kranzlmuller, “State of the art of virtual reality technology,” Presented at 2016 IEEE aerospace conference, Big Sky, Montana, USA, 1-19 (2016)
9. G. C. Burdea and P. Coiffet, Virtual reality technology, 2nd eds. (John Wiley & Sons, Hoboken, 2003).
10. F. P. Brooks, “What′s real about virtual reality?,” IEEE Computer graphics and applications, 19(6), 16-27 (1999).
11. J. Vince, Introduction to virtual reality, 1st eds. (Springer Science & Business Media, Berlin, 2011).
12. F. Biocca and M. R. Levy, Communication in the age of virtual reality. 1st eds. (Routledge, London, 2013).
13. C. Flavian, S. Ibanez-Sanchez and C. Orus, “The impact of virtual, augmented and mixed reality technologies on the customer experience,” Journal of business research, 100, 547-560 (2019).
14. M. Speicher, B. D. Hall and M. Nebeling, “What is mixed reality?,” Presented at 2019 CHI conference on human factors in computing systems, Glasgow, Scotland, UK, 1-15 (2019).
15. S. Rokhsaritalemi, A. adeghi-Niaraki and S. M. Choi, “A review on mixed reality: Current trends, challenges and prospects,” Applied Sciences, 10(2), 636 (2020).
16. M. Billinghurst and H. Kato, “Collaborative mixed reality,” Presented at the first international symposium on mixed reality (ISMR), Yokohama, Japan, 261-284 (1999).
17. Ferrin, F. J. “Update on optical systems for military head-mounted displays,” Helmet-and Head-Mounted Displays IV, SPIE, 3689, 178-185 (1999).
18. S. Cao, K. Nandakumar, R. Babu and B. Thompson, “Game play in virtual reality driving simulation involving head-mounted display and comparison to desktop display,” Virtual Reality, 24(3), 503-513 (2020).
19. G. Tao, B. Garrett, T. Taverner, E. Cordingley and C. Sun, “Immersive virtual reality health games: a narrative review of game design.” Journal of NeuroEngineering and Rehabilitation, 18, 1-21 (2021).
20. F. Pallavicini, A. Pepe and M. E. Minissi, “Gaming in virtual reality: What changes in terms of usability, emotional response and sense of presence compared to non-immersive video games?,” Simulation & Gaming, 50(2), 136-159 (2019).
21. J. Radianti, T. A. Majchrzak, J. Fromm and I. Wohlgenannt, “ A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda,” Computers & education, 147, 103778 (2020).
22. B. Wu, X. Yu and X. Gu, “Effectiveness of immersive virtual reality using head?mounted displays on learning performance: A meta?analysis,” British journal of educational technology, 51(6), 1991-2005 (2020).
23. L. Jensen and F. Konradsen, “A review of the use of virtual reality head-mounted displays in education and training,” Education and Information Technologies, 23, 1515-1529 (2018).
24. W. Fang, L. Chen, T. Zhang, C. Chen, Z. Teng and L. Wang, “Head-mounted display augmented reality in manufacturing: A systematic review,” Robotics and Computer-Integrated Manufacturing, 83, 102567 (2023).
25. H. Zhang, “Head-mounted display-based intuitive virtual reality training system for the mining industry,” International Journal of Mining Science and Technology, 27(4), 717-722 (2017).
26. P. Zimmermann, Virtual reality aided design. A survey of the use of VR in automotive industry. In Product engineering: tools and methods based on virtual reality, 1st eds. 277-296, (Springer, Netherlands, 2008).
27. D. Saldana, M. Neureither, A. Schmiesing, E. Jahng, L. Kysh, S. C. Roll and S. L. Liew, “Applications of head-mounted displays for virtual reality in adult physical rehabilitation: a scoping review,” The American Journal of Occupational Therapy, 74(5), 1-15 (2020).
28. S. Barteit, L. Lanfermann, T. Barnighausen, F. Neuhann and C. Beiersmann, “Augmented, mixed, and virtual reality-based head-mounted devices for medical education: systematic review,” JMIR serious games, 9(3), 29080 (2021).
29. R. Rahman, M. E. Wood, L. Qian, C. L. Price, A. A. Johnson and G. M. Osgood, “Head-mounted display use in surgery: a systematic review,” Surgical innovation, 27(1), 88-100 (2020).
30. D. Gabor, “A new Microscopic principle,” Nature 161, 777 (1948).
31. E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am. 52(10), 1123-1130 (1962).
32. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811-813 (1999).
33. Y. W. Yu and C. C. Sun, “Method for reading and writing with holographic system and holographic storage system,” U.S. Patent No. 11,100,950 (2021).
34. S. W. Goodman, “Medical holography: An overview,” Journal of the Optical Society of America A, 2(1), 85-97 (1985).
35. M. Hamilton, T. Butyn and R. Baker, “Holographic Displays: Emerging Technologies and Use Cases in Defence Applications,” Presented at the NATO MSG-159 2018 Annual M and S Conference, Ottawa, ON, Canada, 11-12 (2018).
36. N. Liang, “The application of the holographic laser projection in the entertaining performance,” Presented at 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE), Tainan, Taiwan, 629-631 (2016).
37. E. Pavel, M. Mihailescu, V. Nicolae, S. Jinga, E. Andronescu, E. Rotiu, L. Ionescu, and C. Mazilu, “Holographic testing of fluorescent photosensitive glass–ceramics,” Opt. Commun. 284, 930-933 (2011).
38. R. K. Erf, Holographic Nondestructive Testing, (Academic, New York, 1974).
39. Z. Marton, I. Kisapati, A. Torok, V. Tornari, E. Bernikola, K. Melessanaki, P. J. N. Pouli, and E. International, “Holographic testing of possible mechanical effects of laser cleaning on the structure of model fresco samples,” NDT & E International 63, 53-59 (2014).
40. D. A. Buralli, and G. M. Morris, “Design of diffractive singlets for monochromatic imaging,” Appl. Opt. 30, 2151-2158 (1991).
41. D. A. Buralli, and G. M. Morris, “Design of two-and three-element diffractive Keplerian telescopes,” Appl. Opt. 31, 38-43 (1992).
42. D. Faklis, and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462-2468 (1995).
43. M. D. Missig and G. M. Morris, “Diffractive optics applied to eyepiece design,” Appl. Opt. 34, 2452-2461 (1995).
44. C. Londono, W. T. Plummer, and P. P. Clark, “Athermalization of a single-component lens with diffractive optics,” Appl. Opt. 32, 2295-2302 (1993).
45. F. T. Chen and H. G. Craighead, “Diffractive lens fabricated with mostly zeroth-order gratings,” Opt. Lett. 21, 177-179 (1996).
46. M. E. Motamedi, A. P. Andrews, W. J. Gunning III, and M. Khoshnevisan, “Miniaturized micro-optical scanners,” Opt. Eng. 33, 3616-3623 (1994).
47. J. R. Leger, D. Chen, and G. Mowry, “Design and performance of diffractive optics for custom laser resonators,” Appl. Opt. 34, 2498-2509 (1995).
48. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects part II,” Physica 9, 974-986 (1942).
49. E. Wolf, “Three-dimensional structure determination of semitransparent objects from holographic data,” Opt. Commun. 1, 153-156 (1969).
50. Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266-277 (2009).
51. R. Fiolka, K. Wicker, R. Heintzmann, and A. Stemmer, “Simplified approach to diffraction tomography in optical microscopy,” Opt. Express 17, 12407-12417 (2009).
52. O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” J. Mod. Opt. 57, 686-699 (2010).
53. Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, “Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,” PLoS One 7, e49502 (2012).
54. T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser. Photon. Rev. 10, 13-39 (2016).
55. K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photon. Eng. 2, 020201 (2016).
56. F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Opt. Lett. 31, 178-180 (2006).
57. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717-719 (2007).
58. Y. J. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express 17, 266-277 (2009).
59. C. Fang-Yen, W. Choi, Y. J. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, “Video-rate tomographic phase microscopy,” J. Biomed. Opt. 16, 011005 (2011).
60. A. Ku? and W. Krauze, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20, 111216 (2015).
61. M. Habaza, B. Gilboa, Y. Roichman, and N. T. Shaked, “Tomographic phase microscopy with 180° rotation of live cells in suspension by holographic optical tweezers,” Opt. Lett. 40, 1881-1884 (2015).
62. S. Chowdhury, W. J. Eldridge, A. Wax, and J. A. Izatt, “Refractive index tomography with structured illumination,” arXiv:1702.03595 (2017).
63. S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40, 5407-5410 (2015).
64. P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, and P. T. C. So, “Scanning color optical tomography (SCOT),” Opt. Express 23, 19752-19762 (2015).
65. J. Jung, K. Kim, J. Yoon, and Y. Park, “Hyperspectral optical diffraction tomography,” Opt. Express 24, 2006-2012 (2016).
66. N. Lue, W. Choi, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion,” Opt. Express 16, 16240-16246 (2008).
67. G. Dardikman, M. Habaza, L. Waller, and N. T. Shaked, “Video-rate processing in tomographic phase microscopy of biological cells using CUDA,” Opt. Express 24, 11839-11854 (2016).
68. W. C. Chew, Waves and Fields in Inhomogeneous Media, IEEE Press Series on Electromagnetic Waves (IEEE, 1995), p. 608.
69. M. G. Somekh, C. W. See, and J. Goh, “Wide field amplitude and phase confocal microscope with speckle illumination,” Opt. Commun. 174,75-80 (2000)
70. Y. Zhou, J. Zhang and F. Fang, “Vergence-accommodation conflict in optical see-through display: Review and prospect,” Results in Optics, 5, 100160 (2021).
71. G. Kramida, “Resolving the vergence-accommodation conflict in head-mounted displays,” IEEE transactions on visualization and computer graphics, 22(7), 1912-1931 (2015).
72. W. R. Klein, “Theoretical Efficiency of Bragg Devices,” Proc. IEEE 54, 803 (1966).
73. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technical Journal, 48(9), 2909-2947 (1969).
74. Jin, D., Zhou, R., Yaqoob, Z. & So, P. T. “Tomographic phase microscopy: Principles and applications in bioimaging,” JOSA B34, B64–B77 (2017).
75. C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
76. C. C. Sun, and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” 40, 1253-1260 (2001).
77. Lauer, V., “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope.” J. Microsc. 205, 165–176 (2002).
78. P. Muller, M. Schurmann, and J. Guck, “The theory of diffraction tomography,” arXiv preprint arXiv:1507.00466 (2015).
79. Goodman, J. Introduction to Fourier Optics (Roberts and Company Publishers, 2004).
指導教授 余業緯 孫慶成(Yeh-Wei Yu Ching-Cherng SUN) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明