博碩士論文 112322041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.145.86.211
姓名 何姍宸(Shan-Chen Ho)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 相位控制多元主動調諧質量阻尼器於結構減震性能評估之數值模擬分析
相關論文
★ 主動式相位控制調諧質量阻尼器之研發與實驗驗證★ 相位控制之主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證
★ 懸臂梁形式壓電調諧質量阻尼器之 研發與最佳化設計★ 天鉤主動隔震系統應用於單自由度機構分析與實驗驗證
★ 天鉤主動隔震系統應用於非剛體設備物之分析與實驗驗證★ 以直接輸出回饋與參數更新迭代方法設計最佳化被動調諧質量阻尼器與多元調諧質量阻尼器
★ 考慮即時濾波與衝程限制之相位控制主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證★ 懸臂梁形式壓電調諧質量阻尼器多自由度分析與最佳化設計之減振與能量擷取研究
★ 設備物應用衝程考量天鉤主動隔震系統之數值模擬分析及實驗驗證★ 變斷面懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之最佳化設計與參數識別
★ 考慮Kanai-Tajimi濾波器以直接輸出回饋進行隔震層阻尼係數之最佳化設計★ 相位控制主動調諧質量阻尼器於非線性 Bouc-Wen Model 結構之分析
★ 具凸面導軌之雙向偏心滾動隔震系統機構開發與試驗驗證★ 雙向天鉤主動隔震系統之數值模擬分析及實驗驗證
★ 天鉤主動隔震系統應用強化學習DDPG與直接輸出回饋之最佳化設計與分析★ 倒擺懸臂梁形式多元壓電調諧質量阻尼器於結構減振與能量擷取之分析與實驗驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 本研究旨在開發新型多元主動調諧質量阻尼器,以提高建築結構在地震作用下的安全性和穩定性。提出了相位控制多元主動調諧質量阻尼器(Phase Control–Multiple Active Tuned Mass Dampers, PC-MATMDs),並根據所需量測的輸出值,將主動控制律分為兩種:一種是結構相對地表位移回饋的相位控制多元主動調諧質量阻尼器(Phase Control Displacement feedback–Multiple Active Tuned Mass Dampers, PCD-MATMDs);另一種是結構絕對加速度回饋的相位控制多元主動調諧質量阻尼器(Phase Control Acceleration feedback–Multiple Active Tuned Mass Dampers, PCA-MATMDs)。PC-MATMDs系統由多個小型的主動調諧質量阻尼器組成,取代了傳統結構主動控制中常見的單一大型ATMD設置。這種多元化的小型ATMD配置能夠降低各別ATMD的機構尺寸和致動器出力需求,使設計、製造和安裝過程更加簡便。本文提出PCD-MATMDs與PCA-MATMDs兩種相位控制律,PCD-MATMDs計算相位控制力時,控制力之配置矩陣無耦合情況產生可獨立計算,但PCA-MATMDs所需量測結構絕對加速度訊號易受高頻雜訊干擾,因此需要設計一濾波器,且系統結合濾波器時設計濾波器前饋係數為0,讓各顆PCA-MATMDs的控制力可以獨立計算。本研究將PCD-MATMDs與PCA-MATMDs最佳化設計分成兩階段,首先對被動元件參數進行最佳化,然後在此基礎上進行相位控制之增益矩陣的最佳化計算,且兩階段皆是利用直接輸出回饋進行最佳化設計。本文對加裝質量比相當的單顆ATMD與多顆MATMDs進行了數值模擬分析,結果表明,多顆MATMDs能夠達到與單顆ATMD相當的減震效果,同時有效降低控制力需求。此外,還採用了頻率反應函數和地震歷時數值模擬分析,即使部分PC-MATMDs發生失效,剩餘的PC-MATMDs仍能保持一定的減震效果,確保系統的穩定性和持續性能。最後,進行相位控制力的增益矩陣與時間延遲的穩定性分析。在增益矩陣的穩定性分析中,結果顯示振幅比與增益係數均有一定的餘裕;在時間延遲的穩定性分析中,PC-MATMDs的最大延遲時間中之最小值為0.02秒,如果致動器所產生之時間延遲不超過此值時,系統穩定性就不會受影響。
摘要(英) This study aims to develop a novel type of multiple active tuned mass dampers (MATMDs) to enhance the safety and stability of building structures under seismic activity. We propose a phase control multiple active tuned mass damper (PC-MATMD) system and categorize the active control laws into two types based on the required measured outputs: one is the phase control displacement feedback-multiple active tuned mass dampers (PCD-MATMDs), which uses the feedback of the structure’s relative displacement to the ground; the other is the phase control acceleration feedback-multiple active tuned mass dampers (PCA-MATMDs), which uses the feedback of the structure’s absolute acceleration. The PC-MATMD system consists of multiple small active tuned mass dampers, replacing the single large ATMD typically seen in traditional structural active control. This diversified small ATMD configuration can reduce the size of each individual ATMD and the actuation force required, simplifying the design, manufacturing, and installation processes.This article proposes two phase control laws, PCD-MATMD and PCA-MATMD. When PCD-MATMD calculates the phase control force, the configuration matrix of the control force is uncoupled and can be calculated independently. However, the absolute acceleration signal of the measurement structure required by PCA-MATMD is susceptible to high-frequency noise interference. Therefore, a filter needs to be designed, and when the system combines the filter, the feedforward coefficient of the filter is designed to be 0, so that the control force of each PCA-MATMD can be calculated independently.This study divides the optimization design of PCD-MATMD and PCA-MATMD into two stages. Firstly, the passive component parameters are optimized, and then the gain matrix of phase control is optimized based on this. Both stages utilize direct output feedback for optimization design. This article conducts numerical simulation analysis on single ATMD and multiple MATMDs with equivalent mass ratios. The results show that multiple MATMDs can achieve equivalent shock absorption effects as a single ATMD, while effectively reducing control force requirements. In addition, frequency response functions and numerical simulation analysis of earthquake duration were also used. Even if some PC-MATMDs fail, the remaining PC-MATMDs can still maintain a certain damping effect, ensuring the stability and sustained performance of the system.Finally, stability analysis is performed on the gain matrix of phase control force and time delay. In the stability analysis of the gain matrix, the results show that there is a certain margin between the amplitude ratio and the gain coefficient; in the stability analysis of time delay, the minimum value of the maximum delay time of PC-MATMDs is 0.02 seconds. If the time delay generated by the actuator does not exceed this value, the system stability will not be affected.
關鍵字(中) ★ 多元調諧質量阻尼器
★ 主動控制
★ 相位控制
★ 最佳化設計
★ 濾波器設計
★ 部分失效
關鍵字(英) ★ Multiple tuned mass dampers
★ active control
★ phase control
★ optimal design
★ filter design
★ partial failure
論文目次 摘要 i
ABSTRACT iii
目錄 v
圖目錄 ix
表目錄 xx
符號說明 xxiv
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 研究內容 4
第二章 相位控制多元主動調諧質量阻尼器 6
2-1 相位控制之概念與原理 6
2-2 單自由度結構加裝MATMDs之動力系統 7
2-3 主動式相位控制原理與多元主動式相位控制律 9
2-3-1 相位控制-結構位移回饋 9
2-3-2 相位控制-結構絕對加速度回饋 11
2-4 帶通濾波器設計 12
2-5 考慮即時濾波之結構加裝PCA-MATMDs動力系統 14
2-6 PCD-MATMDs與PCA-MATMDs參數最佳化設計 15
2-6-1 各顆MTMDs之勁度與阻尼係數最佳化 16
2-6-2 各顆PCD-MATMDs之相位控制力最佳化 18
2-6-3 各顆PCA-MATMDs之相位控制力最佳化 20
2-7 相位控制方法與流程 21
第三章 單自由度結構加裝PCD-MATMDs的數值模擬分析 31
3-1 單自由度結構與PCD-MATMDs之數值模擬參數 31
3-2 頻率反應函數 34
3-2-1 結構加裝3顆PCD-MATMDs之頻率反應函數 34
3-2-2 結構位移頻率反應函數 35
3-2-3 結構絕對加速度頻率反應函數 36
3-2-4 質量塊衝程頻率反應函數 36
3-2-5 主動控制力頻率反應函數 36
3-3 地震歷時分析 37
3-3-1 輸入地震歷時 37
3-3-2 地震歷時之構架反應 37
3-4 系統穩定性分析 41
3-4-1 增益參數穩定性分析 41
3-4-2 時間延遲穩定性分析 43
3-5 PCD-MATMDs部分失效之減震效果分析 44
3-5-1 頻率反應函數 45
3-5-2 地震歷時分析 45
第四章 單自由度結構加裝考慮即時濾波之PCA-MATMDs的數值模擬分析 76
4-1 單自由度結構與PCA-MATMDs之數值模擬參數 76
4-2 頻率反應函數 77
4-2-1 單自由度結構加裝3顆PCA-MATMDs之頻率反應函數 77
4-2-2 結構位移頻率反應函數 78
4-2-3 結構絕對加速度頻率反應函數 79
4-2-4 質量塊衝程頻率反應函數 79
4-2-5 主動控制力頻率反應函數 79
4-3 地震歷時分析 80
4-3-1 地震歷時之構架反應 80
4-4 系統穩定性分析 83
4-4-1 增益參數穩定性分析 83
4-4-2 時間延遲穩定性分析 84
4-5 PCA-MATMDs部分失效之減震效果分析 85
4-5-1 頻率反應函數 85
4-5-2 地震歷時分析 86
第五章 三層樓結構加裝考慮即時濾波之PCD-MATMDs放置結構頂樓的數值模擬分析 114
5-1 三層樓結構與PCD-MATMDs之數值模擬參數 114
5-2 頻率反應函數 116
5-2-1 三層樓結構加裝3顆PCD-MATMDs之頻率反應函數 116
5-2-2 結構位移頻率反應函數 117
5-2-3 結構絕對加速度頻率反應函數 117
5-2-4 質量塊衝程頻率反應函數 117
5-2-5 主動控制力頻率反應函數 118
5-3 地震歷時分析 118
5-3-1 地震歷時之構架反應 118
5-4 系統穩定性分析 122
5-4-1 增益參數穩定性分析 122
5-4-2 時間延遲穩定性分析 124
5-5 PCD-MATMDs部分失效之減震效果分析 124
5-5-1 頻率反應函數 125
5-5-2 地震歷時分析 125
第六章 三層樓結構加裝考慮即時濾波之PCA-MATMDs放置結構頂樓的數值模擬分析 157
6-1 三層樓結構與PCA-MATMDs之數值模擬參數 157
6-2 頻率反應函數 159
6-2-1 三層樓結構加裝3顆PCA-MATMDs之頻率反應函數 159
6-2-2 結構位移頻率反應函數 160
6-2-3 結構絕對加速度頻率反應函數 160
6-2-4 質量塊衝程頻率反應函數 160
6-2-5 主動控制力頻率反應函數 160
6-3 地震歷時分析 161
6-3-1 地震歷時之構架反應 161
6-4 系統穩定性分析 166
6-4-1 增益參數穩定性分析 166
6-4-2 時間延遲穩定性分析 168
6-5 PCA-MATMDs部分失效之減震效果分析 168
6-5-1 頻率反應函數 169
6-5-2 地震歷時分析 169
第七章 Etabs建立10層樓構架加裝考慮即時濾波之PCA-MATMDs放置結構頂樓的數值模擬分析 199
7-1 十層樓結構與PCA-MATMDs之數值模擬參數 199
7-2 頻率反應函數 202
7-2-1 Etabs結構加裝3顆PCA-MATMDs之頻率反應函數 202
7-2-2 結構位移頻率反應函數 202
7-2-3 結構絕對加速度頻率反應函數 203
7-2-4 質量塊衝程頻率反應函數 203
7-2-5 主動控制力頻率反應函數 203
7-3 地震歷時分析 204
7-3-1 輸入地震歷時 204
7-3-2 地震歷時之構架反應 205
第八章 結論與建議 238
8-1 結論 238
8-2 未來研究與建議 240
參考文獻 242
附錄A 250
附錄B 253
參考文獻 [1] 「建築物耐震設計規範及解說」,內政部營建署,台內營字第 0990810250 號。
[2] 羅偉宸,「主動式相位控制調諧質量阻尼器之研發與實驗驗證」,碩士論文,國立中央大學土木工程學系,民國 109 年。
[3] Lai Y.A., Luo W.C., Huang S.K., Yang C.Y. and Chang C.M. “Seismic control of structure with phase control active tuned mass damper”, Structural Control and Health Monitoring, 29(7), e2946, 2022.
[4] 常珮慈,「相位控制之主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證」,碩士論文,國立中央大學土木工程學系,民國 110 年。
[5] 郭彥良,「考慮即時濾波與衝程限制之相位控制主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證」,碩士論文,國立中央大學土木工程學系,民國 111 年。
[6] Lai Y.A., Chang P.T. and Kuo Y.L. “Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures”, Smart Structures and Systems, 32(5), pp. 281-295, 2023.
[7] 林翰佐,「相位控制主動調諧質量阻尼器於非線性Bouc-Wen Model結構之分析」,國立中央大學,碩士論文,民國 112 年。
[8] 張淇閎,「以直接輸出回饋與參數更新迭代方法設計最佳化被動調諧質量阻尼器與多元調諧質量阻尼器」,國立中央大學,碩士論文,民國 111 年。
[9] Lai Y.A., Chang C.H., Yang C.Y. and Chang C.M. “Design of Optimal Passive Tuned Mass Damper with Static Output Feedback and Updating Iterative Procedure”, Structural Control and Health Monitoring, 2023, 2558070, 2023.
[10] Frahm H., “Device for damping vibration of bodies”, U.S. Patent No. 989,958, 1911.
[11] Den Hartog, J.P., Mechanical Vibrations, 4th Edition, New York, McGraw-Hill, 1956.
[12] Warburton G.B. and Ayorinde E.O., “Optimum absorber parameters for simple system”, Earthquake Engineering and Structural Dynamics, 8, pp. 197-217, 1980.
[13] Ayorinde E.O. and Warburton G.B., “Minimizing structural vibrations with absorbers”, Earthquake Engineering and structural Dynamics, 8, pp.219-236, 1980.
[14] Warburton G.B., “Optimum absorber parameters for minimizing vibration response”, Earthquake Engineering and Structural Dynamics, 9, pp. 251-262, 1981.
[15] Warburton G.B., “Optimum absorber parameters for various combinations of response and excitation parameters”, Earthquake Engineering and Structural Dynamics, 10, pp.381-401, 1982.
[16] Bakre S.V. and Jangid R.S., “Optimum parameters of tuned mass damper for damped main system”, Structural Control and Health Monitoring, 14, 2007, pp. 448-470.
[17] 鍾立來、吳賴雲、賴勇安、連冠華、黃旭輝,「以結構位移均方最小化作調諧質塊阻尼器之最佳設計」,中華民國結構工程學會,《結構工程》,第二十六卷,第四期,民國100年,31-58頁。
[18] 鍾立來、顧丁與、賴勇安和吳賴雲,「調諧質塊阻尼器於基底震動之最佳減震設計參數」,中華民國結構工程學會,《結構工程》,第二十七卷,第四期,民國101年,70-90頁。
[19] Korenev B.G. and Reznikov L.M., Dynamic Vibration Absorbers, New York, Wiley, 1993.
[20] Tigli OF. “Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads”, Journal of Sound and Vibration, 331; pp.3035-3049, 2012.
[21] Fujino Y. and Abe M., “Design formulas for tuned mass dampers based on a perturbation technique”, Earthquake Engineering and Structural Dynamics, 22, pp.833-854, 1993.
[22] 王哲夫,「被動調諧質量阻尼器之最佳設計暨應用」,碩士論文,國立中興大學土木工程學系,1996。
[23] Hadi N.S. and Aifiadi Y., “Optimum design of absorber for MDOF structures”, Journal of Structural Engineering, 124, pp.1272-1280, 1998.
[24] Chang C.C., “Mass dampers and their optimal designs for building vibration control”, Engineering Structures, 22, pp.454-463, 1999.
[25] Chen Y.H. and Huang Y.H., “Timoshenko beam with tuned mass dampers and its design curves”, Journal of Sound and Vibration, 278, pp.873-888, 2004.
[26] Ghosh A. and Basu B., “A closed-form optimal tuning criterion for TMD in damped structures”, Structural Control and Health Monitoring, 14, pp.681-692, 2005.
[27] Lee C.L., Chen Y.T., Chung L.L. and Wang Y.P., “Optimal design theories and applications of tuned mass dampers”, Engineering Structures, 28, pp.43-53, 2006.
[28] Chang C.M., Shia S. and Lai Y.A., “Seismic Design of Passive Tuned Mass Damper Parameters Using Active Control Algorithm”, Journal of Sound and Vibration, 426, pp.150-165, 2018.
[29] Iwanami K. and Seto K., “An optimum design method for the dual dynamic damper and its effectiveness”, Bulletin of JSME, 27, 231, 1984, pp. 1965-1973.
[30] Xu K. and Igusa T., “Dynamic characteristics of multiple substructures with closely spaced frequencies”, Earthquake Engineering and Structural Dynamics, 21, 1992, pp. 1059-1070.
[31] Igusa T. and Xu K., “Vibration control using multiple tuned mass dampers”, Journal of Sound and Vibration, 175, 4, 1994, pp. 491-503.
[32] Bandivadekar T.P. and Jangid R.S., “Optimization of multiple tuned mass dampers for vibration control of system under external excitation”, Journal of Vibration and Control, 19, 12, pp. 1854-1874, 2012.
[33] Zuo L. and Nayfeh S.A., “Optimization of the individual stiffness and damping parameters in multiple-tuned-mass-damper systems”, Journal of Vibration and Acoustics, 127, pp. 77-83, 2005.
[34] Hoang N. and Warnitchai P., “Design of multiple tuned mass dampers by using a numerical optimizer”, Earthquake Engineering and Structural Dynamics,34, pp.125-144, 2005.
[35] Li C. and Qu W., “Optimum properties of multiple tuned mass dampers for reduction of translational and torsional response of structures subject to ground acceleration”, Engineering Structure, 28, pp.472-494, 2006.
[36] Suresh L. and Mini K.M., “Effect of Multiple Tuned Mass Dampers for Vibration Control in High-Rise Buildings”, American Society of Civil Engineers, 24(4), 04019031, 2019.
[37] Wang J.F. and Lin C.C., “Seismic performance of multiple tuned mass dampers for soil-irregular building interaction systems”, International Journal of Solids and Structures,42, pp.5536-5554, 2005.
[38] Bayat A., Beiranvand P., and Ashrafi H.R., “Vibration Control of Structures by Multiple Mass Dampers”, Jordan Journal of Civil Engineering, 12, 3, 2018.
[39] Wang L., Shi W., Zhang Q., and Zhou Y., “Study on adaptive-passive multiple tuned mass damper with variable mass for a large-span floor structure”, Engineering Structures, 209, 110010, 2020.
[40] Connor J.J., Introduction to Structural Motion Control, New Jersey, Prentice Hall, 2007.
[41] Spencer B.F., Jr. and Sain M.K., “Frequency domain optimal control strategies for a seismic protection”, Journal of Engineering Mechanics, 120, pp.135-158, 1994.
[42] Dyke S.J., Spencer B.F. Jr., Quast P., Kaspari D.C. Jr. and Sain M.K., “Implementation of an active mass driver using acceleration feedback control”, Microcomputers in Civil Engineering, 11, pp. 305-323, 1996.
[43] Zuo L., Optimal control with structure constraints and its application to the design of passive mechanical systems, Massachusetts, Massachusetts Institute of Technology, 2002.
[44] Zuo L. and Nayfeh S.A., “Optimization of the individual stiffness and damping parameters in multiple-tuned-mass-damper systems”, Journal of Vibration and Acoustics, 127, pp.77-83, 2005.
[45] Zuo L., and Nayfeh S.A., “Structured H2 optimization of vehicle suspensions based on multi-wheel models”, Vehicle System Dynamics, 40, 5, pp. 351-371, 2003.
[46] Chang J.C.H. and Soong T.T., “Structure control using active tuned mass dampers”, Journal of Engineering Mechanics, 106, pp.1091-1098, 1980.
[47] Nishimura I., Kobori T., Sakamoto M., Koshika N., Sasaki K. and Ohrui S., “Active tuned mass damper”, Smart Materials and Structures, 1, pp.306-311, 1992.
[48] Chang C.C. and Yang H.T.Y., “Control of buildings using active tuned mass dampers”, Journal of Engineering Mechanics, 121, pp.355-366, 1995.
[49] Yang D.H., Shin J.H., Lee H.W., Kim S.K. and Kwak M.K., “Active vibration control of structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback control algorithm”, Journal of Sound and Vibration, 392, pp.18-30, 2017.
[50] Loh C.H. and Chao C.H., “Effectiveness of active tuned mass damper and seismic isolation on vibration control of multi-story building”, Journal of Sound and Vibration, 193, pp.773-792, 1996.
[51] Loh C.H., and Lin P.Y., “Kalman Filter Approach for the Control of Seismic-Induced Building Vibration Using Active Mass Damper Systems”, The Structural Design of Tall Buildings, 6, pp.209-224, 1997.
[52] Mackriell L.E., Kwok K.C.S. and Samali B., “Critical mode control of a wind-loaded tall building using an active tuned mass damper”, Engineering structures, 19, pp.834-842, 1997.
[53] Samali B. and Al-Dawod M., “Performance of a five-story benchmark model using an active tuned mass damper and a fuzzy controller”, Engineering structures, 25, pp.1597-1610, 2003.
[54] Kim Y.M., You K.P., You J,Y., Paek S.Y. and Nam B.H., “LQR Control of Along-Wind Responses of a Tall Building using Active Tuned Mass Damper”, The 2016 World Congress on Advances in Civil, Environmental and Materials Research(ACEM16), Korea, August 2016.
[55] Kareem A., Kijewski T. and Tamura T., “Mitigation of motions of tall buildings with specific examples of recent applications”, Wind and Structures, 2, pp.201-251, 1999.
[56] Yoshiki I., “Active and semi‐active vibration control of buildings in Japan—Practical applications and verification”, Structural Control Health Monitor, 16, pp.703-723, 2009.
[57] 鍾立來、吳賴雲、李明璆、楊培堅 ,「東帝士 85國際廣場之結構主動控制」,結構工程,第十四卷,第二期,45-65頁,2004。
[58] Li C. and Liu Y., “Active multiple tuned mass dampers for structures under the ground acceleration”, Earthquake Engineering and Structural Dynamics, 31, pp.1041-1052,2002.
[59] Li C., Liu Y. and Wang Z., “Active Multiple Tuned Mass Dampers: A New Control Strategy”, Journal of Structural Engineering, 129(7), 972, 2003.
[60] Li C. and Zhou D., “Evaluation of Multiple Active Lever-Type Tuned Mass Dampers for Structures Under Ground Acceleration”, Engineering Structure, 26, pp. 303-317, 2004.
[61] Han B. and Li C., “Seismic response of controlled structures with active multiple tuned mass dampers”, Earthquake Engineering and Engineering Vibration, 5, pp.205-213, 2006.
[62] Li C. and Zhu B., “Investigation of response of systems with active multiple tuned mass dampers”, Structural Control and Health Monitoring, 14, pp.1138-1154, 2007.
[63] Li C., Yu Z., Xiong X. and Wang C., “Active multiple-tuned mass dampers for asymmetric structures considering soil-structure interaction”, Structural Control and Health Monitoring, 17, pp.452-472, 2010.
[64] Zhan W., Cui Y., Feng Z., Cheung K.C., Lam J. and Gao H., “Joint optimization approach to building vibration control via multiple active tuned mass dampers”, Mechatronics, 23, pp. 355-368, 2013.
[65] Yan X., Xu Z.D. and Shi Q.X., “Fuzzy neural network control algorithm for asymmetric building structure with active tuned mass damper”, Journal of Vibration and Control, 26, pp.2037-2049, 2020.
[66] Ebrahimi A., Edalati M., Valizadeh M., and Karimipour A., “Increase the effectiveness of AMTMDs and PMTMDs on the seismic behaviour of structures case study: Ten-stories short period concrete building”, Engineering Structures, 237, 112122, 2021.
[67] Chen C.J., Li Z.H., Teng J., Wu Q.G. and Lin B.C., “A variable gain state-feedback technique for an AMD control system with stroke limit and its application to a high-rise building”, The Structural Design of Tall and Special Buildings, 30, e1816, 2021.
[68] Soong T.T. and Dargush G.F., Passive Energy Dissipation Systems in Structural Engineering, New York, Wiley, 1997.
[69] Chung L.L., Lai Y.A., Yang C.S.W., Lien K.H. and Wu L.Y., “Semi-active Tuned Mass Damper with Phase Control”, Journal of Sound and Vibration, 332, pp.3610-3625, 2013.
[70] Moutinho C., “Testing a simple control law to reduce broadband frequency harmonic vibrations using semi-active tuned mass dampers”, Smart Materials and Structures, 24, 055007, 2015.
[71] Ferreira F., Moutinho C., Cunha A. and Caetano E., “Proposal of optimum tuning of semiactive TMDs used to reduce harmonic vibrations based on phase control strategy”, Structural Control and Health Monitoring, 25, e2131, 2018.
[72] Lai Y.A., Chung L.L., Yang C.S.W. and Wu L.Y., “Semi‐active phase control of tuned mass dampers for translational and torsional vibration mitigation of structures”, Structural Control and Health Monitoring, 25, e2191, 2018.
[73] Amini F., Tourani N. and Ghaderi P., “Performance evaluation of phase-controlled semiactive resettable TMD (PCRTMD) with the stiffness retuning ability under strong seismic motions”, Structural Design of Tall and Special Buildings, 27(16), e1502, 2018.
[74] 內政部營建署、內震部建築研究所,葉祥海、蔡益超、宋裕祺、謝尚賢、盧明德、黎益肇「鋼筋混凝土建築物耐震能力評估之案例示範」,2006。
指導教授 賴勇安(Yong-An Lai) 審核日期 2024-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明