博碩士論文 112322042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.226.88.70
姓名 鄧昀禎(Yun-Zhen Teng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 基於磁吸附與全向輪技術的鋼結構攀爬機器人開發與驗證
(Development and Validation of a Steel Structure Climbing Robot Based on Magnetic Adhesion and Omnidirectional Wheel Technology)
相關論文
★ 應用智慧標籤及數據驅動方法於水接觸結構物之結構評估★ 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發
★ Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks★ 智慧型居家機器人用於地震後自動巡查及應變處置之研究
★ 利用UAV整合LoRa與磁導喚醒技術的物聯網架構研發★ 基於微型機器學習的智能避障系統在外牆檢測自主移動機器人中的應用
★ 基於ROS的遠端自動多螺栓 檢測機器人系統開發★ 基於BERT語意分析模型的智慧型BIM資訊搜尋問答系統之研究
★ 基於BIM與無線喚醒物聯網裝置之智慧化結構檢測系統開發★ 利用微型機器學習與微控制器即時檢測室內地磚空心缺陷
★ 結合智慧感測標籤與支持向量機快速判定混凝土裂縫位置★ 應用於鋼結構檢測之高機動型蚇蠖攀爬機器人設計分析及實作驗證
★ 混凝土缺陷自動修補機器人之研發★ 研發具邊緣運算能力之無線振動量測裝置應用於橋梁鋼索特徵頻率偵測
★ 結合智慧感測標籤與機器學習方法判別混凝土內部鋼筋鏽蝕可能性之研究★ 應用於攀爬檢測機器人之輕量級即時多目標螺栓缺陷影像檢測系統之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 在鋼結構建築中,定期檢測和維護是確保結構安全和延長使用壽命的重要措施。然而,
鋼結構通常位於高處或難以觸及的地方,使得檢測過程變得複雜且有一定的危險性。
傳統的檢測和維修方式不僅需要大量人力和資源投入,且在鋼結構上進行吊掛做也具
有一定的危險性。為了解決這些問題,本研究開發了一款基於磁吸附與全向輪技術的
鋼結構攀爬機器人,以提高檢測效率並減少人力需求。本研究的目的是設計並驗證一
款結合全向輪與磁吸技術的攀爬機器人,該機器人能夠在鋼結構表面靈活移動並穩定
附著。透過全向輪機制,機器人能適應不同地形,在鋼結構上進行全方位的靈活移動,
遇到螺栓障礙時可以用橫向移動配合旋轉繞開;在比較狹小的空間也可以利用車體橫
向移動通過。在技術和方法方面,研究使用 3D 列印技術設計機器人的主要部分,確認
設計可以實現後,再使用鋁合金訂製而成輕量又具有高強度的機身。實驗結果顯示,
所設計的機器人在不同重量下的磁吸附力、不同角度的爬行能力、穿越螺栓的能力、
負載測試和爬行速度等方面均有良好表現。實驗結果表明,機器人的麥克納姆輪機制
顯著提高了其適應不同鋼結構上攀爬的能力,開發過程中,經歷了五個版本的設計,
使機器人可以更穩定吸附在牆面上為目標,並且能夠達到更快速、更高負載以及更靈
活的機動性。最後通過一系列實驗驗證了其性能和穩定性。未來,該機器人有望應用
於鋼結構檢測中,提供安全、高效的解決方案。
關鍵字:鋼結構檢測、攀爬機器人、磁吸附技術、全向輪、3D 列印
摘要(英) In steel structure buildings, regular inspection and maintenance are crucial for ensuring
structural safety and prolonging service life. However, steel structures are often located at high
or hard-to-reach places, making the inspection process complex and hazardous. Traditional
inspection methods require significant manpower and resources and pose dangers when
working at heights. To address these issues, this study developed a steel structure climbing
robot based on magnetic adhesion and omnidirectional wheel technology to enhance inspection
efficiency and reduce manpower requirements.The objective of this study is to design and
validate a climbing robot that combines omnidirectional wheels and magnetic adhesion
technology. This robot can move flexibly and adhere stably to steel surfaces. Through the
omnidirectional wheel mechanism, the robot can adapt to various terrains and perform flexible
movements in all directions on steel structures.The study used 3D printing technology to design
the main parts of the robot. After confirming the design′s feasibility, the robot body was custom-
made with lightweight yet high-strength aluminum alloy. Experimental results show that the
designed robot performs well in terms of magnetic adhesion under different weights, crawling
ability at various angles, ability to traverse bolt spacing, load testing, and crawling speed.The
experimental results demonstrate that the Mecanum wheel mechanism of the robot significantly
enhances its ability to adapt to climbing on different steel structures. The development process
included five design iterations, aiming for the robot to achieve more stable adhesion to the walls,
faster movement, higher load capacity, and greater flexibility. Finally, a series of experiments
validated its performance and stability. In the future, this robot is expected to be applied in steel
structure inspections, providing a safe and efficient solution.
Keywords: Steel Structure Inspection, Climbing Robot, Magnetic Adhesion, Omnidirectional
Wheel, 3D Printing
關鍵字(中) ★ 鋼結構檢測
★ 攀爬機器人
★ 全向輪
★ 磁吸附技術
★ 3D 列印
關鍵字(英) ★ Steel Structure Inspection
★ Omnidirectional Wheel
★ Magnetic Adhesion
★ Climbing Robot
★ 3D Printing
論文目次 摘要 ........................................................................................................................................I
ABSTRACT.......................................................................................................................... II
致謝 ..................................................................................................................................... III
目錄 ..................................................................................................................................... IV
圖目錄 ................................................................................................................................. VI
表目錄 .............................................................................................................................. VIII
一、 緒論 ......................................................................................................................... 1
1-1 研究背景與動機 ......................................................................................................... 1
1-2 研究目的 ..................................................................................................................... 1
1-3 論文架構 ..................................................................................................................... 3
二、 文獻回顧 ................................................................................................................. 4
2-1 現有攀爬機器人技術 ................................................................................................. 4
2-2 磁吸附攀爬機器人 ..................................................................................................... 6
2-3 全向輪設計與其發展潛力 ......................................................................................... 8
2-4 磁吸附與全向輪技術的結合 ..................................................................................... 9
三、 研究方法 ............................................................................................................... 11
3-1 全向磁吸附攀爬機器人設計與實作 ....................................................................... 11
3-1-1 機器人設計概念與運動模式 ........................................................................... 12
3-1-2 機構設計與元件組成 ....................................................................................... 16
3-1-3 磁吸附設計 ....................................................................................................... 20
3-1-4 機電整合設計規劃 ........................................................................................... 23
3-2 靜力平衡方法與傾倒分析 ....................................................................................... 26
V
3-2-1 電池配置位置 ................................................................................................... 27
3-2-2 機器人運動力平衡與傾倒分析 ....................................................................... 28
3-3 機器人演算法與程式架構 ....................................................................................... 31
3-3-1 控制方式與機器人操作介面 ........................................................................... 34
四、 實驗規劃與設計 ................................................................................................... 35
4-1 全向輪磁吸附著力測試 ........................................................................................... 37
4-2 不同角度的爬行能力實驗 ....................................................................................... 38
4-3 通過螺栓攀爬實驗 ................................................................................................... 39
4-4 車子負載測試 ........................................................................................................... 41
4-5 爬行速度實驗 ........................................................................................................... 42
4-6 實際結構物攀爬能力測試 ....................................................................................... 43
五、 實驗與分析結果討論 ........................................................................................... 44
5-1 全向輪磁吸附著力測試結果與討論 ....................................................................... 44
5-2 不同角度的爬行能力實驗結果與討論 ................................................................... 45
5-3 通過螺栓攀爬實驗結果與討論 ............................................................................... 48
5-4 車子負載測試結果與討論 ....................................................................................... 49
5-5 爬行速度實驗結果與討論 ....................................................................................... 51
5-6 實際結構物攀爬能力測試結果與討論 ................................................................... 52
5-7 討論與結果比較 ....................................................................................................... 54
六、 結論與未來建議 ................................................................................................... 56
6-1 結論 ........................................................................................................................... 56
6-2 本研究之未來建議與改善方向 ............................................................................... 56
參考文獻 ............................................................................................................................. 58
VI
圖目錄
圖 3-1 OMACR 開發流程架構 ............................................................................................... 11
圖 3-2 全向輪磁吸攀爬機器人 OMACR 的三種運動模式 .................................................. 14
圖 3-3 麥克納姆倫車的移動方向 ........................................................................................... 14
圖 3-4 (a) OMACR 的 3D 介紹圖(b) OMACR 的實體圖 ...................................................... 17
圖 3-5 7075-T7451 鋁合金車體 3D 透視圖 ........................................................................... 19
圖 3-6 (a)一個磁鐵吸附元件 (b) OMACR 的車底俯視圖 .................................................... 21
圖 3-7 直徑 10mm 厚度 2mm 之 N52 磁鐵 ............................................................................ 22
圖 3-8 機電整合規劃設計圖 ................................................................................................... 24
圖 3-9 TB6612 伺服馬達控制板 ............................................................................................ 25
圖 3-10 HM-GM37-3429 永磁碳刷直流減速馬達 ............................................................... 26
圖 3-11 OMACR 吸附在鋼結構平面上的示意圖.................................................................. 27
圖 3-12 OMACR 的電池配置示意圖 ..................................................................................... 28
圖 3-13 吸附在牆面時的斷面圖與之對應下視圖 ................................................................. 29
圖 3-14 假設兩顆磁鐵失效時吸附在牆面時的斷面圖與之對應下視圖 ............................. 30
圖 3-15 OMACR 的軟體架構圖 ............................................................................................. 32
圖 3-16 V7RC 手機應用程式 .................................................................................................. 34
圖 4-1(a) 模擬 45 度斜坡的 L 形狀鋼板的俯視圖(b) 模擬 45 度斜坡的 L 形狀鋼板的側視
圖(c)模擬 90 度垂直牆面的 L 形狀鋼板(d)模擬天花板的 L 形狀鋼板 ........................... 35
圖 4-2 L 形狀鋼板的工程圖(a)不等角視圖(b)正視圖(c)側視圖 ......................................... 36
圖 4-3 室外鋼箱梁實景 ........................................................................................................... 37
圖 4-4 全向輪磁吸附著力測試實驗方法示意圖(a)垂直車體的拉力(b)水平車子的拉力(c)
工程圖 .................................................................................................................................. 37
圖 4-5 不同角度的爬行能力實驗示意圖(a) 45 度傾斜鋼板(b) 90 度垂直鋼板(c) 水平鋼板
.............................................................................................................................................. 39
VII
圖 4-6 通過螺栓攀爬實驗示意圖(a)case1 整排螺栓跨越(b)case2 跨越螺栓間................... 40
圖 4-7 車子負載測試實驗工程示意圖 ................................................................................... 41
圖 4-8 爬行速度實驗的工程示意圖 ....................................................................................... 42
圖 4-9 全向輪穩定實驗環境實景(a)實驗室的柱(b) 室外鋼箱梁 ......................................... 43
圖 5-1 不同傾斜角度下的吸附力散點圖 ............................................................................... 44
圖 5-2 在 45 度鋼板上的爬行能力實驗紀錄影格 ................................................................. 46
圖 5-3 在 90 度鋼板上的爬行能力實驗紀錄影格 ................................................................. 46
圖 5-4 在水平鋼板(天花板)上的爬行能力實驗紀錄影格 .................................................... 47
圖 5-5case1 整排螺栓跨越實驗紀錄影格 .............................................................................. 48
圖 5-6 case2 跨越螺栓間實驗紀錄影格 ................................................................................. 49
圖 5-7 不同角度鋼板上 OMACR 的負載能力柱狀圖........................................................... 50
圖 5-8 不同角度鋼板上的爬行速度折線圖 ........................................................................... 51
圖 5-9 實驗室的柱上爬行實驗紀錄影格 ............................................................................... 53
圖 5-10 室外鋼箱梁爬行實驗紀錄影格 ................................................................................. 53
VIII
表目錄
表 3-1 麥克納姆輪橫向移動理論值參數表 ........................................................................... 16
表 3-2 OMACR 的零組件清單 ............................................................................................... 17
表 3-3 列印材料比較表 ........................................................................................................... 19
表 3-4 磁鐵吸附力理論值參數 ............................................................................................... 22
表 3-5 TB6612 規格表 ............................................................................................................. 25
表 3-6 HM-GM37-3429 永磁碳刷直流減速馬達 規格表 .................................................... 26
表 3-7 OMACR 的運動力平衡分析理論值參數表 ............................................................... 29
表 3-8 OMACR 在缺少兩顆磁鐵時的運動力平衡分析理論值參數表 ............................... 31
表 3-9 OMACR 的控制演算法 ............................................................................................... 33
參考文獻 [1] Lam, T.L. and Y. Xu. A flexible tree climbing robot: Treebot-design and implementation.
in 2011 IEEE International Conference on Robotics and Automation. 2011. IEEE.
[2] Lin, T.-H., A. Putranto, P.-H. Chen, Y.-Z. Teng, and L. Chen, High-mobility inchworm
climbing robot for steel bridge inspection. Automation in Construction, 2023. 152: p.
104905.
[3] Hong, S., Y. Um, J. Park, and H.-W. Park, Agile and versatile climbing on ferromagnetic
surfaces with a quadrupedal robot. Science Robotics, 2022. 7(73): p. eadd1017.
[4] Zhang, W., Z. Li, X. Wang, Y. Huang, J. Li, L.M. Tam, and Q. Xu, Design and
Development of a New Biped Robotic System for Exoskeleton-Structure Window Cleaning.
IEEE Transactions on Automation Science and Engineering, 2024.
[5] Nguyen, S.T. and H.M. La. Development of a steel bridge climbing robot. in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019. IEEE.
[6] Han, Q., A. Ji, N. Jiang, J. Hu, and S.N. Gorb, A climbing robot with paired claws inspired
by gecko locomotion. Robotica, 2022. 40(10): p. 3686-3698.
[7] Jalal, A., R. Kant, A. Kumar, and V. Kumar, Pipe climbing robot. arXiv preprint
arXiv:2201.07865, 2022.
[8] Xie, D., J. Liu, R. Kang, and S. Zuo, Fully 3D-printed modular pipe-climbing robot. IEEE
Robotics and Automation Letters, 2020. 6(2): p. 462-469.
[9] Jiang, Y., D. Chen, H. Zhang, F. Giraud, and J. Paik, Multimodal pipe-climbing robot with
origami clutches and soft modular legs. Bioinspiration & biomimetics, 2020. 15(2): p.
026002.
[10] Tang, Y., Q. Zhang, G. Lin, and J. Yin, Switchable adhesion actuator for amphibious
climbing soft robot. Soft robotics, 2018. 5(5): p. 592-600.
[11] Xu, Y. and W. Fu, Research on Coupling Adsorption Experiments for Wall–Climbing
Robots in Coal Mine Shafts. Processes, 2023. 11(7): p. 2016.
[12] Huang, C., Y. Liu, B. Bai, and K. Wang, The Flying and Adhesion Robot Based on
Approach and Vacuum. Aerospace, 2022. 9(5): p. 228.
[13] Wang, H., S. Yu, J. Liao, X. Qing, D. Sun, F. Ji, W. Song, L. Wang, and T. Li, A robot
59
platform for highly efficient pollutant purification. Frontiers in Bioengineering and
Biotechnology, 2022. 10: p. 903219.
[14] Lin, T.-H., P.-C. Chiang, and A. Putranto, Multispecies hybrid bioinspired climbing robot
for wall tile inspection. Automation in Construction, 2024. 164: p. 105446.
[15] Mahmood, S., S.H. Bakhy, and M. Tawfik. Novel wall-climbing robot capable of
transitioning and perching. in IOP Conference Series: Materials Science and Engineering.
2020. IOP Publishing.
[16] Zhang, Y., E. Guan, P. Li, and Y. Zhao, A Novel Magnetic Circuit Design Method for a
Permanent Magnetic Chuck of a Wall-Climbing Robot. Energies, 2022. 15(18): p. 6653.
[17] Romao, J.C., M. Tavakoli, C. Viegas, P. Neto, and A.T. de Almeida. InchwormClimber: A
light-weight biped climbing robot with a switchable magnet adhesion unit. in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2015. IEEE.
[18] Syrykh, N. and V. Chashchukhin, Wall-climbing robots with permanent-magnet contact
devices: Design and control concept of the contact devices. Journal of Computer and
Systems Sciences International, 2019. 58: p. 818-827.
[19] Zhang, X., X. Zhang, M. Zhang, L. Sun, and M. Li, Optimization design and flexible
detection method of wall-climbing robot system with multiple sensors integration for
magnetic particle testing. Sensors, 2020. 20(16): p. 4582.
[20] Enjikalayil Abdulkader, R., P. Veerajagadheswar, N. Htet Lin, S. Kumaran, S.R. Vishaal,
and R.E. Mohan, Sparrow: A magnetic climbing robot for autonomous thickness
measurement in ship hull maintenance. Journal of Marine Science and Engineering, 2020.
8(6): p. 469.
[21] Peidró, A., M. Tavakoli, J.M. Marín, and Ó. Reinoso, Design of compact switchable
magnetic grippers for the HyReCRo structure-climbing robot. Mechatronics, 2019. 59: p.
199-212.
[22] Palangwatanakul, R., A. Thungsang, K. Thungod, A. Boonyaprapasorn, W. Borisut, T.
Maneewarn, S. Natsupakpong, and T. Sethaput, Curvature Surface Magnetic Wheel
Climbing Robot with Adaptive Electromagnetic Adhesive Force. 2020.
[23] Song, W., H. Jiang, T. Wang, D. Ji, and S. Zhu, Design of permanent magnetic wheel-type
adhesion-locomotion system for water-jetting wall-climbing robot. Advances in
mechanical engineering, 2018. 10(7): p. 1687814018787378.
60
[24] Tavakoli, M., J. Lourenco, C. Viegas, P. Neto, and A.T. de Almeida, The hybrid
OmniClimber robot: Wheel based climbing, arm based plane transition, and switchable
magnet adhesion. Mechatronics, 2016. 36: p. 136-146.
[25] Nguyen, S.T., H. Nguyen, S.T. Bui, V.A. Ho, and H.M. La, Multi-directional bicycle robot
for steel structure inspection. arXiv preprint arXiv:2103.11522, 2021.
[26] Eto, H. and H.H. Asada. Development of a wheeled wall-climbing robot with a shape-
adaptive magnetic adhesion mechanism. in 2020 IEEE International Conference on
Robotics and Automation (ICRA). 2020. IEEE.
[27] Welch, H. and S. Mondal, Analysis of magnetic wheel adhesion force for climbing robot.
Journal of Robotics and Mechatronics, 2019. 3: p. 534-541.
[28] Zhang, M., X. Zhang, M. Li, J. Cao, and Z. Huang, Optimization design and flexible
detection method of a surface adaptation wall-climbing robot with multisensor integration
for petrochemical tanks. Sensors, 2020. 20(22): p. 6651.
[29] Rajendran, R. and J.A. Dhanraj, Free Body Diagram Analysis and Finite Element Method
Analysis of Wall Climbing Robot using the Hybrid Adhesive Mechanism.
[30] Li, Z. and J. Fan. Design and analysis of a climbing robot for weld detection. in Journal
of Physics: Conference Series. 2022. IOP Publishing.
[31] Abd Mutalib, M.A. and N.Z. Azlan, Prototype development of mecanum wheels mobile
robot: A review. Applied Research and Smart Technology (ARSTech), 2020. 1(2): p. 71-
82.
[32] Gaikwad, M.V., G. Pawar, O. Kudale, Y. Jadhav, A. Khandale, and P. More, Mecanum
Wheel: An Emerging Trend for Land-based Vehicle. Int. J. Res. Appl. Sci. Eng. Technol,
2022. 10(5): p. 4472-4476.
[33] Alfiyan, M. and R.D. Puriyanto, Mecanum 4 Omni Wheel Directional Robot Design
System Using PID Method. Journal of Fuzzy Systems and Control, 2023. 1(1): p. 6-13.
[34] Purnata, H., S. Ramadan, M.A. Hidayat, and I. Maulana, PID Control Schematic Design
for Omni-directional Wheel Mobile Robot Cilacap State of Polytechnic. Journal of
Telecommunication Network (Jurnal Jaringan Telekomunikasi), 2022. 12(2): p. 89-94.
[35] Mohanraj, A., P. Parameshwaran, B. Sivasubramaniyan, P. Srinivasan, and V. Nijanthan.
The Importance of the Fourth wheel in a Four-wheeled Omni Directional Mobile Robot-
An Experimental Analysis. in Journal of Physics: Conference Series. 2023. IOP Publishing.
61
[36] Kim, C., J. Suh, and J.-H. Han, Development of a hybrid path planning algorithm and a
bio-inspired control for an omni-wheel mobile robot. Sensors, 2020. 20(15): p. 4258.
[37] Cao, R., J. Gu, C. Yu, and A. Rosendo. Omniwheg: An omnidirectional wheel-leg
transformable robot. in 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2022. IEEE.
[38] Sahin, O.N. and M.İ.C. Dede, Investigation of longitudinal friction characteristics of an
omnidirectional wheel via LuGre model. Robotica, 2021. 39(9): p. 1654-1673.
[39] Li, J., L. Dong, M. Tian, C. Tu, and X. Wang. Adjustable Magnetic Adsorption
Omnidirectional Wall-Climbing Robot for Tank Inspection. in Advanced Theory and
Applications of Engineering Systems Under the Framework of Industry 4.0: Proceedings
of 2022 International Conference on Intelligent Systems Design and Engineering
Applications. 2023. Springer.
指導教授 林子軒(Tzu-Hsuan Lin) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明