參考文獻 |
[1] Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011), “Advances in alternative cementitious binders”, Cement and concrete research, 41(12), 1232-1243.
[2] Gartner, E. (2004), “Industrially interesting approaches to “low-CO2” cements”, Cement and Concrete research, 34(9), 1489-1498.
[3] Trauchessec, R., Mechling, J. M., Lecomte, A., Roux, A., & Le Rolland, B. (2015), “Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends”, Cement and Concrete Composites, 56, 106-114.
[4] Bizzozero, J., Gosselin, C., & Scrivener, K. L. (2014), “Expansion mechanisms in calcium aluminate and sulfoaluminate systems with calcium sulfate”, Cement and Concrete Research, 56, 190-202.
[5] Li, P., Gao, X., Wang, K., Tam, V. W., & Li, W. (2020), “Hydration mechanism and early frost resistance of calcium sulfoaluminate cement concrete”, Construction and Building Materials, 239, 117862.
[6] Sahu, S., Havlica, J., Tomková, V., & Majling, J. (1991), “Hydration behaviour of sulphoaluminate belite cement in the presence op various calcium sulphates”, Thermochimica Acta, 175(1), 45-52.
[7] 顏聰:《土木材料》,第二版,台北市:高立圖書有限公司,民國 94 年。
[8] Kuzel, H. J. (1996), “Initial hydration reactions and mechanisms of delayed ettringite formation in Portland cements”, Cement and Concrete Composites, 18(3), 195-203.
[9] Pelletier, L., Winnefeld, F., & Lothenbach, B. (2010), “The ternary system Portland cement–calcium sulphoaluminate clinker–anhydrite: hydration mechanism and mortar properties”, Cement and Concrete Composites, 32(7), 497-507.
[10] Le Saoût, G., Lothenbach, B., Hori, A., Higuchi, T., & Winnefeld, F. (2013), “Hydration of Portland cement with additions of calcium sulfoaluminates”, Cement and Concrete Research, 43, 81-94.
[11] Zhang, J., Li, G., Ye, W., Chang, Y., Liu, Q., & Song, Z. (2018), “Effects of ordinary Portland cement on the early properties and hydration of calcium sulfoaluminate cement”, Construction and Building Materials, 186, 1144-1153.
[12] Nelson, S., Geddes, D. A., Kearney, S. A., Cockburn, S., Hayes, M., Angus, M. J., ... & Provis, J. L. (2023), “Hydrate assemblage stability of calcium sulfoaluminate-belite cements with varying sulfate content”, Construction and Building Materials, 383, 131358.
[13] Bertola, F., Gastaldi, D., Irico, S., Paul, G., & Canonico, F. (2022), “Influence of the amount of calcium sulfate on physical/mineralogical properties and carbonation resistance of CSA-based cements”, Cement and Concrete Research, 151, 106634.
[14] Pelletier-Chaignat, L., Winnefeld, F., Lothenbach, B., Le Saout, G., Müller, C. J., & Famy, C. (2011), “Influence of the calcium sulphate source on the hydration mechanism of Portland cement–calcium sulphoaluminate clinker–calcium sulphate binders”, Cement and Concrete Composites, 33(5), 551-561.
[15] García-Maté, M., Angeles, G. D. L. T., León-Reina, L., Losilla, E. R., Aranda, M. A., & Santacruz, I. (2015), “Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement”, Cement and Concrete Composites, 55, 53-61.
[16] Glasser, F. P., & Zhang, L. (2001), “High-performance cement matrices based on calcium sulfoaluminate–belite compositions”, Cement and Concrete Research, 31(12), 1881-1886.
[17] 張辰鴻,「硫鋁酸鈣水泥複合膠結材之配比與工程性質之研究」,國立中央大學,碩士論文,民國 112 年。
[18] Trauchessec, R., Mechling, J. M., Lecomte, A., Roux, A., & Le Rolland, B. (2014), “Impact of anhydrite proportion in a calcium sulfoaluminate cement and Portland cement blend”, Advances in cement research, 26(6), 325-333.
[19] 萬宇豪、朱金勇、張川、喬有浩、陳禮儀、王勝,(2017),「矽酸鹽-硫鋁酸鹽複合水泥水化協同效應研究」,科學技術與工程,第17卷,第14期。
[20] Wang, J., Tan, Y., Li, H., Xie, Y., & Feng, Z. (2023), “Hydration Mechanism of Portland and Calcium Sulphoaluminate Cementitious Material”, Journal of Advanced Concrete Technology, 21(12), 983-994.
[21] [2] Neenu, S. K. (2021), “Types of Shrinkages in Concrete and its Preventions”, The Constructor, https://theconstructor.org/concrete/types-of-shrinkages-in-concrete-prevention/20384/
[22] Afroughsabet, V., Biolzi, L., Monteiro, P. J., & Gastaldi, M. M. (2021), “Investigation of the mechanical and durability properties of sustainable high performance concrete based on calcium sulfoaluminate cement”, Journal of Building Engineering, 43, 102656.
[23] Sirtoli, D., Wyrzykowski, M., Riva, P., & Lura, P. (2020) , “Autogenous and drying shrinkage of mortars based on Portland and calcium sulfoaluminate cements”, Materials and Structures, 53, 1-14.
[24] Tang, S. W., Zhu, H. G., Li, Z. J., Chen, E., & Shao, H. Y. (2015), “Hydration stage identification and phase transformation of calcium sulfoaluminate cement at early age”, Construction and Building Materials, 75, 11-18.
[25] Bullard, J. W., Jennings, H. M., Livingston, R. A., Nonat, A., Scherer, G. W., Schweitzer, J. S., ... & Thomas, J. J. (2011), “ Mechanisms of cement hydration”, Cement and concrete research, 41(12), 1208-1223.
[26] Ji, G., Ali, H. A., Sun, K., Xuan, D., Peng, X., & Li, J. (2023) , “Volume Deformation and Hydration Behavior of Ordinary Portland Cement/Calcium Sulfoaluminate Cement Blends”, Materials, 16(7), 2652.
[27] Abba, S. I., Ma’aruf, A., & Nuruddeen, M. M. (2017) , “ “Sulfate Attack’’A Theoretical Review Approach I”, International Journal of Advance Technology in Engineering and Science, 3(1), 643-651.
[28] Brunetaud, X., Khelifa, M. R., & Al-Mukhtar, M. (2012), “Size effect of concrete samples on the kinetics of external sulfate attack. Cement and Concrete Composites”, 34(3), 370-376.
[29] Bescher, E., Rice, E. K., Ramseyer, C., & Roswurm, S. (2016), “Sulfate resistance of calcium sulphoaluminate cement”, Journal of Structural Integrity and Maintenance, 1(3), 131-139.
[30] 黃兆龍:《高性能混凝土理論與實務》,初版,台北市:詹氏書局,民國 92 年。
[31] Al-Amoudi, O. S. B. (2002), “Attack on plain and blended cements exposed to aggressive sulfate environments”, Cement and Concrete Composites, 24(3-4), 305-316.
[32] Monteiro, P. J. (2006), “Scaling and saturation laws for the expansion of concrete exposed to sulfate attack”, Proceedings of the National Academy of Sciences, 103(31), 11467-11472.
[33] Ost, B.J. (1997), “World cement research and development”, Journal of PCA Research and Development Laboratories, 8, p. 82.
[34] Ost, B.J.,(1975), “Schiefelbein, B., & Summerfiled”, J.M. US Patent 3, 860,433
[35] Han, T., Wang, X., Li, D., Li, D., Han, N., & Xing, F. (2019), “Damage and degradation mechanism for single intermittent cracked mortar specimens under a combination of chemical solutions and dry-wet cycles”, Construction and Building Materials, 213, 567-581.
[36] He, R., Zheng, S., Gan, V. J., Wang, Z., Fang, J., & Shao, Y. (2020), “Damage mechanism and interfacial transition zone characteristics of concrete under sulfate erosion and Dry-Wet cycles”, Construction and Building Materials, 255, 119340.
[37] Ma, H., Gong, W., Yu, H., & Sun, W. (2018), “Durability of concrete subjected to dry-wet cycles in various types of salt lake brines”, Construction and Building Materials, 193, 286-294.
[38] Nehdi, M. L., Suleiman, A. R., & Soliman, A. M. (2014), “Investigation of concrete exposed to dual sulfate attack”, Cement and Concrete Research, 64, 42-53.
[39] Steiger, M., & Asmussen, S. (2008), “Crystallization of sodium sulfate phases in porous materials: The phase diagram Na2SO4–H2O and the generation of stress”, Geochimica et Cosmochimica Acta, 72(17), 4291-4306.
[40] Winkler, E. M., & Singer, P. C. (1972), “Crystallization pressure of salts in stone and concrete”, Geological society of America bulletin, 83(11), 3509-3514.
[41] Liu, Z., Deng, D., & De Schutter, G. (2014). Does concrete suffer sulfate salt weathering?. Construction and Building Materials, 66, 692-701.
[42] Wang, K., Guo, J., Wu, H., & Yang, L. (2020), “Influence of dry-wet ratio on properties and microstructure of concrete under sulfate attack”, Construction and Building Materials, 263, 120635.
[43] Collepardi, M. (1999), “Damage by delayed ettringite formation”, Concrete International, 21(1), 69-74.
[44] Irassar, E. F., Di Maio, A., & Batic, O. R. (1996), “Sulfate attack on concrete with mineral admixtures”, Cement and Concrete Research, 26(1), 113-123.
[45] Bonakdar, A., & Mobasher, B. (2010), “ Multi-parameter study of external sulfate attack in blended cement materials”, Construction and Building Materials, 24(1), 61-70.
[46] Folliard, K. J., Ohta, M., Rathje, E., & Collins, P. (1994), “Influence of mineral admixtures on expansive cement mortars”, Cement and Concrete Research, 24(3), 424-432.
[47] 丁向群,趙欣悅,徐曉婉,房延鳳,( 2020),「礦物摻合料對硫鋁酸鹽水泥-普通矽酸鹽水泥複合體系性能的影響」,新型材料建築,第三期,40-44頁。
[48] Winnefeld, F., & Barlag, S. (2010), “Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite”, Journal of thermal analysis and calorimetry, 101(3), 949-957.
[49] Huang, G., Pudasainee, D., Gupta, R., & Liu, W. V. (2021), “Extending blending proportions of ordinary Portland cement and calcium sulfoaluminate cement blends: Its effects on setting, workability, and strength development”, Frontiers of Structural and Civil Engineering, 15, 1249-1260.
[50] Ke, G., Zhang, J., & Liu, Y. (2022), “Shrinkage characteristics of calcium sulphoaluminate cement concrete”, Construction and Building Materials, 337, 127627.
[51] Colonna, D., Leone, M., Aiello, M. A., Tortelli, S., & Marchi, M. I. (2019), “Short and long-term behaviour of RC beams made with CSA binder”, Engineering Structures, 197, 109370.
[52] Yu, H., Wu, L. P., Liu, W. V., & Pourrahimian, Y. (2017), “Developing expansive shotcrete mixtures from calcium sulfoaluminate”, Portland cement, and calcium sulfate. In Proceedings of the CIM.
[53] Cao, R., Yang, J., Li, G., Liu, F., Niu, M., & Wang, W. (2022), “Resistance of the composite cementitious system of ordinary Portland/calcium sulfoaluminate cement to sulfuric acid attack”, Construction and Building Materials, 329, 127171.
[54] 邵化建,「乾濕循環對混凝土物理力學性能影響研究」,西北農林科技大學農業水利工程系,碩士論文,民國 110 年。
[55] Clifton, J. R., Frohnsdorff, G. J., & Ferraris, C. C. (1999), “Standards for evaluating the susceptibility of cement-based materials to external sulfate attack”.
[56] Qi, B., Gao, J., Chen, F., & Shen, D. (2017), “ Evaluation of the damage process of recycled aggregate concrete under sulfate attack and wetting-drying cycles”, Construction and Building Materials, 138, 254-262.
[57] Jang, S. Y., Kim, B. S., & Oh, B. H. (2011), “Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests”, Cement and Concrete Research, 41(1), 9-19.
[58] Park, S. S., Kwon, S. J., & Jung, S. H. (2012), “Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation”, Construction and Building Materials, 29, 183-192.
[59] Zhutovsky, S., & Douglas Hooton, R. (2017), “Experimental study on physical sulfate salt attack”, Materials and Structures, 50(1), 54.
[60] Scherer, G. W. (2004), “Stress from crystallization of salt”, Cement and concrete research, 34(9), 1613-1624.
[61] Tsui, N., Flatt, R. J., & Scherer, G. W. (2003), “Crystallization damage by sodium sulfate”, Journal of cultural heritage, 4(2), 109-115.
[62] Mehta, P. K. (1986), “ Concrete. Structure, properties and materials”.
[63] Mehta, P. K. (1973), “Mechanism of expansion associated with ettringite formation”, Cement and concrete research, 3(1), 1-6.
[64] Flatt, R. J., & Scherer, G. W. (2008), “Thermodynamics of crystallization stresses in DEF”, Cement and Concrete Research, 38(3), 325-336.
[65] Ping, X., & Beaudoin, J. J. (1992), “Mechanism of sulphate expansion I. Thermodynamic principle of crystallization pressure”, Cement and concrete research, 22(4), 631-640.
[66] Chaunsali, P., & Mondal, P. (2016), “Physico-chemical interaction between mineral admixtures and OPC–calcium sulfoaluminate (CSA) cements and its influence on early-age expansion”, Cement and Concrete Research, 80, 10-20.
[67] Liu, C., Su, X., Wu, Y., Zheng, Z., Yang, B., Luo, Y., ... & Yang, J. (2021), “Effect of nano-silica as cementitious materials-reducing admixtures on the workability, mechanical properties and durability of concrete”, Nanotechnology Reviews, 10(1), 1395-1409.
[68] 丁向群、徐曉婉,(2018),「礦物摻合料對矽酸鹽水泥-硫鋁酸鹽水泥複合體系凝結時間及強度的影響」,瀋陽建築大學學報:自然科學版,第34卷,第3期, 498-504頁。
[69] Khedr, S. A., & Abou-Zeid, M. N. (1994), “Characteristics of silica-fume concrete”, Journal of Materials in Civil Engineering, 6(3), 357-375.
[70] Mostafa, N. Y., & Brown, P. W. (2005), “Heat of hydration of high reactive pozzolans in blended cements: Isothermal conduction calorimetry”, Thermochimica acta, 435(2), 162-167.
[71] Kadri, E. H., & Duval, R. (2009), “Hydration heat kinetics of concrete with silica fume”, Construction and Building Materials, 23(11), 3388-3392.
[72] Khatri, R. P., Sirivivatnanon, V., & Gross, W. (1995), “Effect of different supplementary cementitious materials on mechanical properties of high performance concrete”, Cement and Concrete research, 25(1), 209-220.
[73] Chen, X., & Wu, S. (2013), “Influence of water-to-cement ratio and curing period on pore structure of cement mortar”, Construction and Building Materials, 38, 804-812.
[74] Korouzhdeh, T., Eskandari-Naddaf, H., & Kazemi, R. (2022), “The ITZ microstructure, thickness, porosity and its relation with compressive and flexural strength of cement mortar; influence of cement fineness and water/cement ratio”, Frontiers of Structural and Civil Engineering, 16(2), 191-201.
[75] Lin, F., & Meyer, C. (2009), “Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure”, Cement and Concrete Research, 39(4), 255-265.
[76] Matsushita, T., Hoshino, S., Maruyama, I., Noguchi, T., & Yamada, K. (2007), “ Effect of curing temperature and water to cement ratio on hydration of cement compounds”, In Proceedings of 12th international congress chemistry of cement, Montreal.
[77] Kjellsen, K. O., & Detwiler, R. J. (1992), “Reaction kinetics of Portland cement mortars hydrated at different temperatures”, Cement and Concrete Research, 22(1), 112-120.
[78] Haach, V. G., Vasconcelos, G., & Lourenço, P. B. (2011), “Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars”, Construction and Building Materials, 25(6), 2980-2987.
[79] Shi, J., Liu, B., Zhou, F., Shen, S., Guo, A., & Xie, Y. (2021), “Effect of steam curing regimes on temperature and humidity gradient, permeability and microstructure of concrete”, Construction and Building Materials, 281, 122562.
[80] Burg, R. G. (1996), “The influence of casting and curing temperature on the properties of fresh and hardened concrete (No. R&D Bulletin RD113T,)”, Skokie, IL, USA: Portland Cement Association.
[81] Wu, Z., Wong, H. S., & Buenfeld, N. R. (2017), “Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking”, Cement and concrete research, 98, 136-154.
[82] Goud, S. S., Rajaram, C., & Kumar, R. P. (2016), “Comparative Study on Materials used in Various Codes for Design of RC and Steel Structures”. |