博碩士論文 112326601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.218.177.226
姓名 高橋拓實(Takumi Takahashi)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 一鍋法完全酵素生成黃素腺嘌呤二核?酸的研究及第一個PLP依賴性二氨基丙酸消旋?的分子表徵
(Studies on the one-pot complete enzymatic generation of flavin adenine dinucleotide and the molecular characterization of the first PLP-dependent diaminopropionic acid racemase)
相關論文
★ 利用巨大芽孢桿菌轉化魚廢和蔗渣為Alcalase之綠色循環模組★ 利用微生物酵素水解高油脂肉廢污泥之技術開發
★ 利用巨大芽孢桿菌將豆渣轉化為生物製造 蛋白質原料之綠色循環模組★ 以一鍋式酵素串聯法將聚乳酸塑膠轉化為胺基酸
★ 應用聚乳酸塑膠於聚乳酸-蘋果酸膠體共聚物之低溫永續製程★ 利用枯草芽孢桿菌轉化魚內臟之亮胺酸為酮異己酸
★ 以酵素法萃煉微藻污泥之長鏈均質聚磷酸鹽★ 利用一鍋式高溫蛋白酶串聯反應將豆渣升級再造為生物永續製造之蛋白質原料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 黃素腺嘌呤二核?酸 (FAD) 是許多生物氧化還原和自由基反應中的關鍵輔助因子。傳統上,核黃素的 FAD 生物合成遵循兩步驟?途徑,需要 ATP,以黃素單核?酸 (FMN) 為中間體。工業規模的 FAD 生產傳統上依賴微生物發酵,但這些方法通常需要繁瑣的淨化步驟。考慮到原子經濟性和產量效率的重要性,酵素體外方法提供了一種更可持續和有效的選擇。然而,由於依賴昂貴的 ATP 作為底物,?促 FAD 合成的廣泛工業應用受到阻礙。為了解決這個限制,我開發了一種雙?級聯繫統,利用來自廢水微藻的聚磷酸鹽作為磷酸鹽供體,從腺?中再生 ATP。此再生機制透過雙功能核黃素激?/FAD合成?和焦磷酸?的共同作用,使核黃素在2小時內完全轉化為FAD,最終濃度達到約1.2g/L(1.5mmol/L)。值得注意的是,唯一的副產品正磷酸鹽可以透過廢水微藻回收來再生聚磷酸鹽,進而可以作為磷酸鹽供體重新融入系統。這種閉環策略有利於實現環境永續的 FAD 合成過程,同時最大限度地減少廢棄物產生。
摘要(英) Flavin adenine dinucleotide (FAD) serves as a crucial cofactor in numerous biological redox
and radical reactions. Conventionally, FAD biosynthesis from riboflavin follows a two-step
enzymatic pathway requiring ATP, with flavin mononucleotide (FMN) as the intermediate.
Industrial-scale FAD production has traditionally relied on microbial fermentation, but these
methods often entail laborious purification steps. Given the importance of atomic economy and
yield efficiency, an enzymatic in vitro approach presents a more sustainable and effective
alternative. However, the widespread industrial application of enzymatic FAD synthesis is
hindered by its dependence on costly ATP as a substrate. To address this limitation, I have
developed a two-enzyme cascade system that regenerates ATP from adenosine, utilizing
polyphosphate derived from wastewater microalgae as a phosphate donor. This regeneration
mechanism enables the complete transformation of riboflavin into FAD within 2 h, achieving
a final concentration of approximately 1.2 g/L (1.5 mmol/L) through the combined action of
bifunctional riboflavin kinase/FAD synthetase and pyrophosphatase. Notably, the only
byproduct, orthophosphate, can be recycled by wastewater microalgae to regenerate
polyphosphate, which in turn can be reintegrated into the system as a phosphate donor. This
closed-loop strategy facilitates an environmentally sustainable FAD synthesis process with
minimal waste production.
關鍵字(中) ★ 黃素腺嘌呤二核?酸(FAD)
★ ?催化合成
★ 永續生物催化
★ 核黃素激?
★ PLP 依賴型消旋?
★ 綠色化學
★ 生化工程
關鍵字(英) ★ Flavin adenine dinucleotide (FAD)
★ Enzymatic synthesis
★ Sustainable biocatalysis
★ Riboflavin kinase
★ PLP-dependent racemase
★ Green chemistry
★ Biochemical engineering
論文目次 PartI
Abstract ................................................................................................................................... I
Acknowledgements ............................................................................................................... II
Table of Contents .................................................................................................................. III
List of Figures ....................................................................................................................... IV
List of Tables ......................................................................................................................... V
Explanation of Symbols and Abbreviations ......................................................................... VI
1 Introduction ......................................................................................................................... 1
2 Results and Discussion ........................................................................................................ 6
2-1 Biocatalytic ATP synthesis from adenosine using wastewater microalgal polyP ......... 6
2-2 One-pot enzymatic FAD synthesis from riboflavin and adenosine ............................... 9
2-3 Efficiency analysis based on green metrics ................................................................. 14
3 Conclusions ....................................................................................................................... 16
4 Materials and Methods ...................................................................................................... 17
4-1 Heterologous expression of recombinant proteins ...................................................... 17
4-2 Sodium dodecyl sulfate–polyacrylamide gel electrophoresis ..................................... 17
4-3 Microalgae cultivation ................................................................................................ 18
4-4 Quantification of polyP using the toluidine blue O (TBO) method ............................ 18
4-5 Chlorella vulgaris cell lysis and polyP purification .................................................... 20
4-6 ATP regeneration using heterologous microalgal polyP ............................................. 20
4-7 Electrophoretic analysis of polyp using TBO-stained TBE-Urea polyacrylamide gel
electrophoresis ............................................................................................................ 22
4-8 Enzymatic synthesis of FAD from adenosine, riboflavin, and microalgal polyP ....... 22
4-9 Enzymatic cascade for NADH-dependent FAD reduction ......................................... 22
4-10 High-performance liquid chromatography ................................................................ 23
5 References ......................................................................................................................... 24
6 Appendix ............................................................................................................................ 27

PartII
Abstract ................................................................................................................................... I
Acknowledgements ............................................................................................................... II
Table of Contents .................................................................................................................. III
List of Figures ....................................................................................................................... IV
List of Tables ......................................................................................................................... V
Explanation of Symbols and Abbreviations ......................................................................... VI
1 Introduction ......................................................................................................................... 1
2 Results ................................................................................................................................. 7
2-1 Expression, purification, and physicochemical characterization of Lf-Orf6 ................. 7
2-2 Quantitative evaluation of the stereoinversion of Dap catalyzed by Lf-Orf6 ............... 9
2-3 Cofactor dependence of the stereoinversion of Dap catalyzed by Lf-Orf6 ................. 11
2-4 Biochemical characterization of recombinant Lf-Orf6 as Dap racemase .................... 13
2-5 Phylogenetic analysis of PLP-dependent DapR .......................................................... 20
2-6 Structural prediction of Lf-Orf6 .................................................................................. 27
3 Discussion .......................................................................................................................... 32
4 Materials and methods ....................................................................................................... 40
4-1 Plasmids, bacterial strains, and growth conditions ..................................................... 40
4-2 Expression and purification of recombinant Lf-Orf6 and Bs-ThrC ............................ 40
4-3 Physicochemical characterization of Lf-Orf6 .............................................................. 41
4-4 Racemase assays ......................................................................................................... 42
4-5 Threonine synthase assay ............................................................................................ 43
4-6 In silico analyses including phylogenetic tree analysis and molecular modeling ....... 43
5 References ......................................................................................................................... 44
參考文獻 (1) Zhou, D.; Shao, L.; Spitz, D. R. Reactive Oxygen Species in
Normal and Tumor Stem Cells. Adv. Cancer Res. 2014, 122, 1?67.
(2) Martinez-Reyes, I.; Chandel, N. S. Mitochondrial TCA Cycle
Metabolites Control Physiology and Disease. Nat. Commun. 2020, 11
(1), 1?11.
(3) Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial
Electron Transport Chain: Oxidative Phosphorylation, Oxidant
Production, and Methods of Measurement. Redox Biol. 2020, 37,
101674.
(4) Heine, T.; van Berkel, W. J. H.; Gassner, G.; van Pee, K.-H.;
Tischler, D. Two-Component FAD-Dependent Monooxygenases:
Current Knowledge and Biotechnological Opportunities. Biology
2018, 7 (3), 42.
(5) Mansoorabadi, S. O.; Thibodeaux, C. J.; Liu, H.-W. The Diverse
Roles of Flavin Coenzymes?Nature’s Most Versatile Thespians. J.
Org. Chem. 2007, 72 (17), 6329?6342.
(6) Adeva-Andany, M. M.; Carneiro-Freire, N.; Seco-Filgueira, M.;
Fernandez-Fernandez, C.; Mourin?o-Bayolo, D. Mitochondrial β Oxidation of Saturated Fatty Acids in Humans. Mitochondrion 2019,
46, 73?90.
(7) Kim, J.-J. P.; Miura, R. Acyl-CoA Dehydrogenases and Acyl-CoA
Oxidases. Structural Basis for Mechanistic Similarities and Differ ences. Eur. J. Biochem. 2004, 271 (3), 483?493.
(8) Kavakli, I. H.; Ozturk, N.; Gul, S. DNA Repair by Photolyases.
In Advances in Protein Chemistry and Structural Biology; Academic
Press, 2019; Vol. 115, pp 1?19. DOI: 10.1016/bs.apcsb.2018.10.003.
(9) Liu, S.; Hu, W.; Wang, Z.; Chen, T. Production of Riboflavin
and Related Cofactors by Biotechnological Processes. Microb. Cell
Fact. 2020, 19 (1), 31.
(10) Giancaspero, T. A.; Colella, M.; Brizio, C.; Difonzo, G.;
Fiorino, G. M.; Leone, P.; Brandsch, R.; Bonomi, F.; Iametti, S.;
Barile, M. Remaining Challenges in Cellular Flavin Cofactor
Homeostasis and Flavoprotein Biogenesis. Front Chem. 2015, 3, 30.
(11) Watanabe, T.; Uchida, T.; Kato, J.; Chibata, I. Production of
Flavine-Adenine Dinucleotide from Riboflavine by a Mutant of
Sarcina Lutea. Appl. Microbiol. 1974, 27 (3), 531?536.
(12) Hagihara, T.; Fujio, T.; Aisaka, K. Cloning of FAD Synthetase
Gene from Corynebacterium Ammoniagenes and Its Application to
FAD and FMN Production. Appl. Microbiol. Biotechnol. 1995, 42 (5),
724?729.
(13) Yatsyshyn, V. Y.; Fedorovych, D. V.; Sibirny, A. A. Metabolic
and Bioprocess Engineering of the Yeast Candida Famata for FAD
Production. J. Ind. Microbiol. Biotechnol. 2014, 41 (5), 823?835.
(14) Liu, S.; Diao, N.; Wang, Z.; Lu, W.; Tang, Y.-J.; Chen, T.
Modular Engineering of the Flavin Pathway in Escherichia Coli for
Improved Flavin Mononucleotide and Flavin Adenine Dinucleotide
Production. J. Agric. Food Chem. 2019, 67 (23), 6532?6540.
(15) Sun, C.; Li, Z.; Ning, X.; et al. In vitro biosynthesis of ATP from
adenosine and polyphosphate. Bioresour. Bioprocess. 2021, 8, 117.
(16) Martin, E.; Lalley, J.; Wang, W.; Nadagouda, M. N.; Sahle Demessie, E.; Chae, S.-R. Phosphate Recovery from Water Using
Cellulose Enhanced Magnesium Carbonate Pellets: Kinetics, Iso therms, and Desorption. Chem. Eng. J. 2018, 352, 612?624.
(17) Wang, X.; Qin, Z.-H.; Hao, T.-B.; Ye, G.-B.; Mou, J.-H.;
Balamurugan, S.; Bin, X.-Y.; Buhagiar, J.; Wang, H.-M.; Lin, C. S. K.;
Yang, W.-D.; Li, H.-Y. A Combined Light Regime and Carbon Supply
Regulation Strategy for Microalgae-Based Sugar Industry Wastewater
Treatment and Low-Carbon Biofuel Production to Realise a Circular
Economy. Chem. Eng. J. 2022, 446, 137422.
(18) Lin, Y.-H.; Nishikawa, S.; Jia, T. Z.; Yeh, F.-I.; Khusnutdinova,
A.; Yakunin, A. F.; Fujishima, K.; Wang, P.-H. One-Pot Chemo Enzymatic Synthesis and One-Step Recovery of Length-Variable
Long-Chain Polyphosphates from Microalgal Biomass. Green Chem.
2023, 25, 9896.
(19) Serrano, A.; Frago, S.; Herguedas, B.; Martinez-Julvez, M.;
Velazquez-Campoy, A.; Medina, M. Key Residues at the Riboflavin
Kinase Catalytic Site of the Bifunctional Riboflavin kinase/FMN
Adenylyltransferase from Corynebacterium Ammoniagenes. Cell Bio chem. Biophys. 2013, 65 (1), 57?68.
(20) Wong, N. G. K.; Rhodes, C.; Dessent, C. E. H. Photo degradation of Riboflavin under Alkaline Conditions: What Can Gas Phase Photolysis Tell Us about What Happens in Solution? Molecules
2021, 26 (19), 6009.
(21) Stuehr, D. J.; Cho, H. J.; Kwon, N. S.; Weise, M. F.; Nathan, C.
F. Purification and Characterization of the Cytokine-Induced
Macrophage Nitric Oxide Synthase: An FAD- and FMN-Containing
Flavoprotein. Proc. Natl. Acad. Sci. U. S. A. 1991, 88 (17), 7773?7777.
(22) Liang, J.-Y.; Cheng, C.-W.; Yu, C.-H.; Chen, L.-Y.
Investigations of Blue Light-Induced Reactive Oxygen Species from REFERENCES
(1) Zhou, D.; Shao, L.; Spitz, D. R. Reactive Oxygen Species in
Normal and Tumor Stem Cells. Adv. Cancer Res. 2014, 122, 1?67.
(2) Martinez-Reyes, I.; Chandel, N. S. Mitochondrial TCA Cycle
Metabolites Control Physiology and Disease. Nat. Commun. 2020, 11
(1), 1?11.
(3) Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial
Electron Transport Chain: Oxidative Phosphorylation, Oxidant
Production, and Methods of Measurement. Redox Biol. 2020, 37,
101674.
(4) Heine, T.; van Berkel, W. J. H.; Gassner, G.; van Pee, K.-H.;
Tischler, D. Two-Component FAD-Dependent Monooxygenases:
Current Knowledge and Biotechnological Opportunities. Biology
2018, 7 (3), 42.
(5) Mansoorabadi, S. O.; Thibodeaux, C. J.; Liu, H.-W. The Diverse
Roles of Flavin Coenzymes?Nature’s Most Versatile Thespians. J.
Org. Chem. 2007, 72 (17), 6329?6342.
(6) Adeva-Andany, M. M.; Carneiro-Freire, N.; Seco-Filgueira, M.;
Fernandez-Fernandez, C.; Mourin?o-Bayolo, D. Mitochondrial β Oxidation of Saturated Fatty Acids in Humans. Mitochondrion 2019,
46, 73?90.
(7) Kim, J.-J. P.; Miura, R. Acyl-CoA Dehydrogenases and Acyl-CoA
Oxidases. Structural Basis for Mechanistic Similarities and Differ ences. Eur. J. Biochem. 2004, 271 (3), 483?493.
(8) Kavakli, I. H.; Ozturk, N.; Gul, S. DNA Repair by Photolyases.
In Advances in Protein Chemistry and Structural Biology; Academic
Press, 2019; Vol. 115, pp 1?19. DOI: 10.1016/bs.apcsb.2018.10.003.
(9) Liu, S.; Hu, W.; Wang, Z.; Chen, T. Production of Riboflavin
and Related Cofactors by Biotechnological Processes. Microb. Cell
Fact. 2020, 19 (1), 31.
(10) Giancaspero, T. A.; Colella, M.; Brizio, C.; Difonzo, G.;
Fiorino, G. M.; Leone, P.; Brandsch, R.; Bonomi, F.; Iametti, S.;
Barile, M. Remaining Challenges in Cellular Flavin Cofactor
Homeostasis and Flavoprotein Biogenesis. Front Chem. 2015, 3, 30.
(11) Watanabe, T.; Uchida, T.; Kato, J.; Chibata, I. Production of
Flavine-Adenine Dinucleotide from Riboflavine by a Mutant of
Sarcina Lutea. Appl. Microbiol. 1974, 27 (3), 531?536.
(12) Hagihara, T.; Fujio, T.; Aisaka, K. Cloning of FAD Synthetase
Gene from Corynebacterium Ammoniagenes and Its Application to
FAD and FMN Production. Appl. Microbiol. Biotechnol. 1995, 42 (5),
724?729.
(13) Yatsyshyn, V. Y.; Fedorovych, D. V.; Sibirny, A. A. Metabolic
and Bioprocess Engineering of the Yeast Candida Famata for FAD
Production. J. Ind. Microbiol. Biotechnol. 2014, 41 (5), 823?835.
(14) Liu, S.; Diao, N.; Wang, Z.; Lu, W.; Tang, Y.-J.; Chen, T.
Modular Engineering of the Flavin Pathway in Escherichia Coli for
Improved Flavin Mononucleotide and Flavin Adenine Dinucleotide
Production. J. Agric. Food Chem. 2019, 67 (23), 6532?6540.
(15) Sun, C.; Li, Z.; Ning, X.; et al. In vitro biosynthesis of ATP from
adenosine and polyphosphate. Bioresour. Bioprocess. 2021, 8, 117.
(16) Martin, E.; Lalley, J.; Wang, W.; Nadagouda, M. N.; Sahle Demessie, E.; Chae, S.-R. Phosphate Recovery from Water Using
Cellulose Enhanced Magnesium Carbonate Pellets: Kinetics, Iso therms, and Desorption. Chem. Eng. J. 2018, 352, 612?624.
(17) Wang, X.; Qin, Z.-H.; Hao, T.-B.; Ye, G.-B.; Mou, J.-H.;
Balamurugan, S.; Bin, X.-Y.; Buhagiar, J.; Wang, H.-M.; Lin, C. S. K.;
Yang, W.-D.; Li, H.-Y. A Combined Light Regime and Carbon Supply
Regulation Strategy for Microalgae-Based Sugar Industry Wastewater
Treatment and Low-Carbon Biofuel Production to Realise a Circular
Economy. Chem. Eng. J. 2022, 446, 137422.
(18) Lin, Y.-H.; Nishikawa, S.; Jia, T. Z.; Yeh, F.-I.; Khusnutdinova,
A.; Yakunin, A. F.; Fujishima, K.; Wang, P.-H. One-Pot Chemo Enzymatic Synthesis and One-Step Recovery of Length-Variable
Long-Chain Polyphosphates from Microalgal Biomass. Green Chem.
2023, 25, 9896.
(19) Serrano, A.; Frago, S.; Herguedas, B.; Martinez-Julvez, M.;
Velazquez-Campoy, A.; Medina, M. Key Residues at the Riboflavin
Kinase Catalytic Site of the Bifunctional Riboflavin kinase/FMN
Adenylyltransferase from Corynebacterium Ammoniagenes. Cell Bio chem. Biophys. 2013, 65 (1), 57?68.
(20) Wong, N. G. K.; Rhodes, C.; Dessent, C. E. H. Photo degradation of Riboflavin under Alkaline Conditions: What Can Gas Phase Photolysis Tell Us about What Happens in Solution? Molecules
2021, 26 (19), 6009.
(21) Stuehr, D. J.; Cho, H. J.; Kwon, N. S.; Weise, M. F.; Nathan, C.
F. Purification and Characterization of the Cytokine-Induced
Macrophage Nitric Oxide Synthase: An FAD- and FMN-Containing
Flavoprotein. Proc. Natl. Acad. Sci. U. S. A. 1991, 88 (17), 7773?7777.
(22) Liang, J.-Y.; Cheng, C.-W.; Yu, C.-H.; Chen, L.-Y.
Investigations of Blue Light-Induced Reactive Oxygen Species from Flavin Mononucleotide on Inactivation of E. Coli. J. Photochem.
Photobiol., B 2015, 143, 82?88.
(23) Wang, P.-H.; Nishikawa, S.; McGlynn, S. E.; Fujishima, K. One Pot De Novo Synthesis of [4Fe-4S] Proteins Using a Recombinant
SUF System under Aerobic Conditions. ACS Synth. Biol. 2023, 12,2887.
1. Newman DJ, Cragg GM (2012) Natural Products as Sources of New Drugs Over the 30
Years from 1981 to 2010. J Nat Prod 75:311-335.
2. Selem-Mojica N, Aguilar C, Gutierrez-Garcia K, Martinez-Guerrero CE, Barona-Gomez
F (2019) EvoMining Reveals the Origin and Fate of Natural Product Biosynthetic
Enzymes. Microb Genom 5.
3. Medema MH, Fischbach MA (2015) Computational Approaches to Natural Product
Discovery. Nat Chem Biol 11:639-648.
4. Rottig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011)
NRPSpredictor2--a Web Server for Predicting NRPS Adenylation Domain Specificity.
Nucleic Acids Res 39:W362-W367.
5. Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR (2012) The Natural Product
Domain Seeker NaPDoS: a Phylogeny Based Bioinformatic Tool to Classify Secondary
Metabolite Gene Diversity. PLoS One 7:e34064.
6. Blin K, Pascal Andreu V, de Los Santos ELC, Del Carratore F, Lee SY, Medema MH,
Weber T (2019) The AntiSMASH Database Version 2: a Comprehensive Resource on
Secondary Metabolite Biosynthetic Gene Clusters. Nucleic Acids Res 47:D625-D630.
7. Weng JK, Chapple C (2010) The Origin and Evolution of Lignin Biosynthesis. New
Phytol 187:273-285.
8. Ehinger FJ, Hertweck C (2024) Biosynthesis and Recruitment of Reactive Amino Acids
in Nonribosomal Peptide Assembly Lines. Curr Opin Chem Biol 81:102494.
9. Yamanaka K, Fukumoto H, Takehara M, Hamano Y, Oikawa T (2020) The
Stereocontrolled Biosynthesis of Mirror-Symmetric 2,4-Diaminobutyric Acid
Homopolymers Is Critically Governed by Adenylation Activations. ACS Chem Biol
15:1964-1973.
10. Yamanaka K, Ozaki R, Hamano Y, Oikawa T (2021) Molecular and Mechanistic
Characterization of PddB, the First PLP-Independent 2,4-Diaminobutyric Acid Racemase
Discovered in an Actinobacterial D-Amino Acid Homopolymer Biosynthesis. Front
Microbiol 12:686023.
11. Li Y, Dalby PA (2022) Engineering of Enzymes using Non-natural Amino Acids. BiosciRep 42.
12. Takehara M, Saimura M, Inaba H, Kato Y, Muro S, Matsunaga T, Yamanaka K (2021)
Characterization of an L-α,β-diaminopropionic Acid Polymer with Comb-like Structure
Isolated from a Poly(ε-L-lysine)-Producing Streptomyces sp. Appl Microbiol Biotechnol
105:3145-3157.
13. Kobylarz MJ, Grigg JC, Takayama SJ, Rai DK, Heinrichs DE, Murphy ME (2014)
Synthesis of L-2,3-diaminopropionic acid, a Siderophore and Antibiotic Precursor. Chem
Biol 21:379-388.
14. Daniel-Ivad P, Ryan KS (2024) New Reactions by Pyridoxal Phosphate-dependent
Enzymes. Curr Opin Chem Biol 81:102472.
15. Yokoigawa K, Okubo Y, Soda K (2003) Subunit Interaction of Monomeric Alanine
Racemases from Four Shigella species in Catalytic Reaction. FEMS Microbiol Lett
221:263-267.
16. Graham DL, Beio ML, Nelson DL, Berkowitz DB (2019) Human Serine Racemase: Key
Residues/Active Site Motifs and Their Relation to Enzyme Function. Front Mol Biosci
6:8.
17. Nagasawa T, Tanizawa K, Satoda T, Yamada H (1988) Diaminopropionate Ammonia-
Lyase from Salmonella typhimurium. Purification and Characterization of the Crystalline
Enzyme, and Sequence Determination of the Pyridoxal 5′-Phosphate Binding Peptide. J
Biol Chem 263:958-964.
18. De Miranda J, Panizzutti R, Foltyn VN, Wolosker H (2002) Cofactors of Serine Racemase
that Physiologically Stimulate the Synthesis of the N-methyl-D-aspartate (NMDA)
Receptor Coagonist D-serine. Proc Natl Acad Sci U S A 99:14542-14547.
19. Cook SP, Galve-Roperh I, Martinez del Pozo A, Rodriguez-Crespo I (2002) Direct
Calcium Binding Results in Activation of Brain Serine Racemase. J Biol Chem
277:27782-27792.
20. Skarstedt MT, Greer SB (1973) Threonine Synthetase of Bacillus subtilis. The Nature of
an Associated Dehydratase Activity. J Biol Chem 248:1032-1044.
21. Petronikolou N, Ortega MA, Borisova SA, Nair SK, Metcalf WW (2019) Molecular Basis
of Bacillus subtilis ATCC 6633 Self-Resistance to the Phosphono-oligopeptide Antibiotic
Rhizocticin. ACS Chem Biol 14:742-750.
22. Covarrubias AS, Hogbom M, Bergfors T, Carroll P, Mannerstedt K, Oscarson S, Parish
T, Jones TA, Mowbray SL (2008) Structural, Biochemical, and In Vivo Investigations of
the Threonine Synthase from Mycobacterium tuberculosis. J Mol Biol 381:622-633.
23. Dekimpe S, Masschelein J (2021) Beyond Peptide Bond Formation: The Versatile Role
of Condensation Domains in Natural Product Biosynthesis. Nat Prod Rep 38:1910-1937.
24. Nelson DL, Applegate GA, Beio ML, Graham DL, Berkowitz DB (2017) Human Serine
Racemase Structure/Activity Relationship Studies Provide Mechanistic Insight and Point
to Position 84 as a Hot Spot for β-elimination Function. J Biol Chem 292:13986-14002.
25. Uda K, Nishimura R, Li Y, Shimoda E, Miyamoto T, Moe LA (2025) Evolution and
Functional Diversification of Serine Racemase Homologs in Bacteria. J Mol Evol :.
26. Raboni S, Marchetti M, Faggiano S, Campanini B, Bruno S, Marchesani F, Margiotta M,
Mozzarelli A (2018) The Energy Landscape of Human Serine Racemase. Front Mol
Biosci 5:112.
27. Yorifuji T, Ogata K (1971) Arginine Racemase of Pseudomonas graveolens. I.
Purification, Crystallization, and Properties. J Biol Chem 246:5085-5092.
28. Hasebe F, Adachi K, Maruyama C, Hamano Y (2024) Discovery of a Novel Methionine
Biosynthetic Route via O-phospho-L-homoserine. Appl Environ Microbiol 90:e0124724.
29. Omi R, Goto M, Miyahara I, Mizuguchi H, Hayashi H, Kagamiyama H, Hirotsu K (2003)
Crystal Structures of Threonine Synthase from Thermus thermophilus HB8:
Conformational Change, Substrate Recognition, and Mechanism. J Biol Chem
278:46035-46045.
30. Shoji M, Hanaoka K, Ujiie Y, Tanaka W, Kondo D, Umeda H, Kamoshida Y, Kayanuma
M, Kamiya K, Shiraishi K, Machida Y, Murakawa T, Hayashi H (2014) A QM/MM study
of the L-threonine Formation Reaction of Threonine Synthase: Implications into the
Mechanism of the Reaction Specificity. J Am Chem Soc 136:4525-4533.
31. Machida Y, Murakawa T, Sakai A, Shoji M, Shigeta Y, Hayashi H (2020) Reaction of
Threonine Synthase with the Substrate Analogue 2-amino-5-phosphonopentanoate:
Implications into the Proton Transfer at the Active Site. J Biochem 167:357-364.
指導教授 王柏翔(Po-hsiang Wang) 審核日期 2025-3-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明