參考文獻 |
(1) Zhou, D.; Shao, L.; Spitz, D. R. Reactive Oxygen Species in
Normal and Tumor Stem Cells. Adv. Cancer Res. 2014, 122, 1?67.
(2) Martinez-Reyes, I.; Chandel, N. S. Mitochondrial TCA Cycle
Metabolites Control Physiology and Disease. Nat. Commun. 2020, 11
(1), 1?11.
(3) Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial
Electron Transport Chain: Oxidative Phosphorylation, Oxidant
Production, and Methods of Measurement. Redox Biol. 2020, 37,
101674.
(4) Heine, T.; van Berkel, W. J. H.; Gassner, G.; van Pee, K.-H.;
Tischler, D. Two-Component FAD-Dependent Monooxygenases:
Current Knowledge and Biotechnological Opportunities. Biology
2018, 7 (3), 42.
(5) Mansoorabadi, S. O.; Thibodeaux, C. J.; Liu, H.-W. The Diverse
Roles of Flavin Coenzymes?Nature’s Most Versatile Thespians. J.
Org. Chem. 2007, 72 (17), 6329?6342.
(6) Adeva-Andany, M. M.; Carneiro-Freire, N.; Seco-Filgueira, M.;
Fernandez-Fernandez, C.; Mourin?o-Bayolo, D. Mitochondrial β Oxidation of Saturated Fatty Acids in Humans. Mitochondrion 2019,
46, 73?90.
(7) Kim, J.-J. P.; Miura, R. Acyl-CoA Dehydrogenases and Acyl-CoA
Oxidases. Structural Basis for Mechanistic Similarities and Differ ences. Eur. J. Biochem. 2004, 271 (3), 483?493.
(8) Kavakli, I. H.; Ozturk, N.; Gul, S. DNA Repair by Photolyases.
In Advances in Protein Chemistry and Structural Biology; Academic
Press, 2019; Vol. 115, pp 1?19. DOI: 10.1016/bs.apcsb.2018.10.003.
(9) Liu, S.; Hu, W.; Wang, Z.; Chen, T. Production of Riboflavin
and Related Cofactors by Biotechnological Processes. Microb. Cell
Fact. 2020, 19 (1), 31.
(10) Giancaspero, T. A.; Colella, M.; Brizio, C.; Difonzo, G.;
Fiorino, G. M.; Leone, P.; Brandsch, R.; Bonomi, F.; Iametti, S.;
Barile, M. Remaining Challenges in Cellular Flavin Cofactor
Homeostasis and Flavoprotein Biogenesis. Front Chem. 2015, 3, 30.
(11) Watanabe, T.; Uchida, T.; Kato, J.; Chibata, I. Production of
Flavine-Adenine Dinucleotide from Riboflavine by a Mutant of
Sarcina Lutea. Appl. Microbiol. 1974, 27 (3), 531?536.
(12) Hagihara, T.; Fujio, T.; Aisaka, K. Cloning of FAD Synthetase
Gene from Corynebacterium Ammoniagenes and Its Application to
FAD and FMN Production. Appl. Microbiol. Biotechnol. 1995, 42 (5),
724?729.
(13) Yatsyshyn, V. Y.; Fedorovych, D. V.; Sibirny, A. A. Metabolic
and Bioprocess Engineering of the Yeast Candida Famata for FAD
Production. J. Ind. Microbiol. Biotechnol. 2014, 41 (5), 823?835.
(14) Liu, S.; Diao, N.; Wang, Z.; Lu, W.; Tang, Y.-J.; Chen, T.
Modular Engineering of the Flavin Pathway in Escherichia Coli for
Improved Flavin Mononucleotide and Flavin Adenine Dinucleotide
Production. J. Agric. Food Chem. 2019, 67 (23), 6532?6540.
(15) Sun, C.; Li, Z.; Ning, X.; et al. In vitro biosynthesis of ATP from
adenosine and polyphosphate. Bioresour. Bioprocess. 2021, 8, 117.
(16) Martin, E.; Lalley, J.; Wang, W.; Nadagouda, M. N.; Sahle Demessie, E.; Chae, S.-R. Phosphate Recovery from Water Using
Cellulose Enhanced Magnesium Carbonate Pellets: Kinetics, Iso therms, and Desorption. Chem. Eng. J. 2018, 352, 612?624.
(17) Wang, X.; Qin, Z.-H.; Hao, T.-B.; Ye, G.-B.; Mou, J.-H.;
Balamurugan, S.; Bin, X.-Y.; Buhagiar, J.; Wang, H.-M.; Lin, C. S. K.;
Yang, W.-D.; Li, H.-Y. A Combined Light Regime and Carbon Supply
Regulation Strategy for Microalgae-Based Sugar Industry Wastewater
Treatment and Low-Carbon Biofuel Production to Realise a Circular
Economy. Chem. Eng. J. 2022, 446, 137422.
(18) Lin, Y.-H.; Nishikawa, S.; Jia, T. Z.; Yeh, F.-I.; Khusnutdinova,
A.; Yakunin, A. F.; Fujishima, K.; Wang, P.-H. One-Pot Chemo Enzymatic Synthesis and One-Step Recovery of Length-Variable
Long-Chain Polyphosphates from Microalgal Biomass. Green Chem.
2023, 25, 9896.
(19) Serrano, A.; Frago, S.; Herguedas, B.; Martinez-Julvez, M.;
Velazquez-Campoy, A.; Medina, M. Key Residues at the Riboflavin
Kinase Catalytic Site of the Bifunctional Riboflavin kinase/FMN
Adenylyltransferase from Corynebacterium Ammoniagenes. Cell Bio chem. Biophys. 2013, 65 (1), 57?68.
(20) Wong, N. G. K.; Rhodes, C.; Dessent, C. E. H. Photo degradation of Riboflavin under Alkaline Conditions: What Can Gas Phase Photolysis Tell Us about What Happens in Solution? Molecules
2021, 26 (19), 6009.
(21) Stuehr, D. J.; Cho, H. J.; Kwon, N. S.; Weise, M. F.; Nathan, C.
F. Purification and Characterization of the Cytokine-Induced
Macrophage Nitric Oxide Synthase: An FAD- and FMN-Containing
Flavoprotein. Proc. Natl. Acad. Sci. U. S. A. 1991, 88 (17), 7773?7777.
(22) Liang, J.-Y.; Cheng, C.-W.; Yu, C.-H.; Chen, L.-Y.
Investigations of Blue Light-Induced Reactive Oxygen Species from REFERENCES
(1) Zhou, D.; Shao, L.; Spitz, D. R. Reactive Oxygen Species in
Normal and Tumor Stem Cells. Adv. Cancer Res. 2014, 122, 1?67.
(2) Martinez-Reyes, I.; Chandel, N. S. Mitochondrial TCA Cycle
Metabolites Control Physiology and Disease. Nat. Commun. 2020, 11
(1), 1?11.
(3) Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial
Electron Transport Chain: Oxidative Phosphorylation, Oxidant
Production, and Methods of Measurement. Redox Biol. 2020, 37,
101674.
(4) Heine, T.; van Berkel, W. J. H.; Gassner, G.; van Pee, K.-H.;
Tischler, D. Two-Component FAD-Dependent Monooxygenases:
Current Knowledge and Biotechnological Opportunities. Biology
2018, 7 (3), 42.
(5) Mansoorabadi, S. O.; Thibodeaux, C. J.; Liu, H.-W. The Diverse
Roles of Flavin Coenzymes?Nature’s Most Versatile Thespians. J.
Org. Chem. 2007, 72 (17), 6329?6342.
(6) Adeva-Andany, M. M.; Carneiro-Freire, N.; Seco-Filgueira, M.;
Fernandez-Fernandez, C.; Mourin?o-Bayolo, D. Mitochondrial β Oxidation of Saturated Fatty Acids in Humans. Mitochondrion 2019,
46, 73?90.
(7) Kim, J.-J. P.; Miura, R. Acyl-CoA Dehydrogenases and Acyl-CoA
Oxidases. Structural Basis for Mechanistic Similarities and Differ ences. Eur. J. Biochem. 2004, 271 (3), 483?493.
(8) Kavakli, I. H.; Ozturk, N.; Gul, S. DNA Repair by Photolyases.
In Advances in Protein Chemistry and Structural Biology; Academic
Press, 2019; Vol. 115, pp 1?19. DOI: 10.1016/bs.apcsb.2018.10.003.
(9) Liu, S.; Hu, W.; Wang, Z.; Chen, T. Production of Riboflavin
and Related Cofactors by Biotechnological Processes. Microb. Cell
Fact. 2020, 19 (1), 31.
(10) Giancaspero, T. A.; Colella, M.; Brizio, C.; Difonzo, G.;
Fiorino, G. M.; Leone, P.; Brandsch, R.; Bonomi, F.; Iametti, S.;
Barile, M. Remaining Challenges in Cellular Flavin Cofactor
Homeostasis and Flavoprotein Biogenesis. Front Chem. 2015, 3, 30.
(11) Watanabe, T.; Uchida, T.; Kato, J.; Chibata, I. Production of
Flavine-Adenine Dinucleotide from Riboflavine by a Mutant of
Sarcina Lutea. Appl. Microbiol. 1974, 27 (3), 531?536.
(12) Hagihara, T.; Fujio, T.; Aisaka, K. Cloning of FAD Synthetase
Gene from Corynebacterium Ammoniagenes and Its Application to
FAD and FMN Production. Appl. Microbiol. Biotechnol. 1995, 42 (5),
724?729.
(13) Yatsyshyn, V. Y.; Fedorovych, D. V.; Sibirny, A. A. Metabolic
and Bioprocess Engineering of the Yeast Candida Famata for FAD
Production. J. Ind. Microbiol. Biotechnol. 2014, 41 (5), 823?835.
(14) Liu, S.; Diao, N.; Wang, Z.; Lu, W.; Tang, Y.-J.; Chen, T.
Modular Engineering of the Flavin Pathway in Escherichia Coli for
Improved Flavin Mononucleotide and Flavin Adenine Dinucleotide
Production. J. Agric. Food Chem. 2019, 67 (23), 6532?6540.
(15) Sun, C.; Li, Z.; Ning, X.; et al. In vitro biosynthesis of ATP from
adenosine and polyphosphate. Bioresour. Bioprocess. 2021, 8, 117.
(16) Martin, E.; Lalley, J.; Wang, W.; Nadagouda, M. N.; Sahle Demessie, E.; Chae, S.-R. Phosphate Recovery from Water Using
Cellulose Enhanced Magnesium Carbonate Pellets: Kinetics, Iso therms, and Desorption. Chem. Eng. J. 2018, 352, 612?624.
(17) Wang, X.; Qin, Z.-H.; Hao, T.-B.; Ye, G.-B.; Mou, J.-H.;
Balamurugan, S.; Bin, X.-Y.; Buhagiar, J.; Wang, H.-M.; Lin, C. S. K.;
Yang, W.-D.; Li, H.-Y. A Combined Light Regime and Carbon Supply
Regulation Strategy for Microalgae-Based Sugar Industry Wastewater
Treatment and Low-Carbon Biofuel Production to Realise a Circular
Economy. Chem. Eng. J. 2022, 446, 137422.
(18) Lin, Y.-H.; Nishikawa, S.; Jia, T. Z.; Yeh, F.-I.; Khusnutdinova,
A.; Yakunin, A. F.; Fujishima, K.; Wang, P.-H. One-Pot Chemo Enzymatic Synthesis and One-Step Recovery of Length-Variable
Long-Chain Polyphosphates from Microalgal Biomass. Green Chem.
2023, 25, 9896.
(19) Serrano, A.; Frago, S.; Herguedas, B.; Martinez-Julvez, M.;
Velazquez-Campoy, A.; Medina, M. Key Residues at the Riboflavin
Kinase Catalytic Site of the Bifunctional Riboflavin kinase/FMN
Adenylyltransferase from Corynebacterium Ammoniagenes. Cell Bio chem. Biophys. 2013, 65 (1), 57?68.
(20) Wong, N. G. K.; Rhodes, C.; Dessent, C. E. H. Photo degradation of Riboflavin under Alkaline Conditions: What Can Gas Phase Photolysis Tell Us about What Happens in Solution? Molecules
2021, 26 (19), 6009.
(21) Stuehr, D. J.; Cho, H. J.; Kwon, N. S.; Weise, M. F.; Nathan, C.
F. Purification and Characterization of the Cytokine-Induced
Macrophage Nitric Oxide Synthase: An FAD- and FMN-Containing
Flavoprotein. Proc. Natl. Acad. Sci. U. S. A. 1991, 88 (17), 7773?7777.
(22) Liang, J.-Y.; Cheng, C.-W.; Yu, C.-H.; Chen, L.-Y.
Investigations of Blue Light-Induced Reactive Oxygen Species from Flavin Mononucleotide on Inactivation of E. Coli. J. Photochem.
Photobiol., B 2015, 143, 82?88.
(23) Wang, P.-H.; Nishikawa, S.; McGlynn, S. E.; Fujishima, K. One Pot De Novo Synthesis of [4Fe-4S] Proteins Using a Recombinant
SUF System under Aerobic Conditions. ACS Synth. Biol. 2023, 12,2887.
1. Newman DJ, Cragg GM (2012) Natural Products as Sources of New Drugs Over the 30
Years from 1981 to 2010. J Nat Prod 75:311-335.
2. Selem-Mojica N, Aguilar C, Gutierrez-Garcia K, Martinez-Guerrero CE, Barona-Gomez
F (2019) EvoMining Reveals the Origin and Fate of Natural Product Biosynthetic
Enzymes. Microb Genom 5.
3. Medema MH, Fischbach MA (2015) Computational Approaches to Natural Product
Discovery. Nat Chem Biol 11:639-648.
4. Rottig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011)
NRPSpredictor2--a Web Server for Predicting NRPS Adenylation Domain Specificity.
Nucleic Acids Res 39:W362-W367.
5. Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR (2012) The Natural Product
Domain Seeker NaPDoS: a Phylogeny Based Bioinformatic Tool to Classify Secondary
Metabolite Gene Diversity. PLoS One 7:e34064.
6. Blin K, Pascal Andreu V, de Los Santos ELC, Del Carratore F, Lee SY, Medema MH,
Weber T (2019) The AntiSMASH Database Version 2: a Comprehensive Resource on
Secondary Metabolite Biosynthetic Gene Clusters. Nucleic Acids Res 47:D625-D630.
7. Weng JK, Chapple C (2010) The Origin and Evolution of Lignin Biosynthesis. New
Phytol 187:273-285.
8. Ehinger FJ, Hertweck C (2024) Biosynthesis and Recruitment of Reactive Amino Acids
in Nonribosomal Peptide Assembly Lines. Curr Opin Chem Biol 81:102494.
9. Yamanaka K, Fukumoto H, Takehara M, Hamano Y, Oikawa T (2020) The
Stereocontrolled Biosynthesis of Mirror-Symmetric 2,4-Diaminobutyric Acid
Homopolymers Is Critically Governed by Adenylation Activations. ACS Chem Biol
15:1964-1973.
10. Yamanaka K, Ozaki R, Hamano Y, Oikawa T (2021) Molecular and Mechanistic
Characterization of PddB, the First PLP-Independent 2,4-Diaminobutyric Acid Racemase
Discovered in an Actinobacterial D-Amino Acid Homopolymer Biosynthesis. Front
Microbiol 12:686023.
11. Li Y, Dalby PA (2022) Engineering of Enzymes using Non-natural Amino Acids. BiosciRep 42.
12. Takehara M, Saimura M, Inaba H, Kato Y, Muro S, Matsunaga T, Yamanaka K (2021)
Characterization of an L-α,β-diaminopropionic Acid Polymer with Comb-like Structure
Isolated from a Poly(ε-L-lysine)-Producing Streptomyces sp. Appl Microbiol Biotechnol
105:3145-3157.
13. Kobylarz MJ, Grigg JC, Takayama SJ, Rai DK, Heinrichs DE, Murphy ME (2014)
Synthesis of L-2,3-diaminopropionic acid, a Siderophore and Antibiotic Precursor. Chem
Biol 21:379-388.
14. Daniel-Ivad P, Ryan KS (2024) New Reactions by Pyridoxal Phosphate-dependent
Enzymes. Curr Opin Chem Biol 81:102472.
15. Yokoigawa K, Okubo Y, Soda K (2003) Subunit Interaction of Monomeric Alanine
Racemases from Four Shigella species in Catalytic Reaction. FEMS Microbiol Lett
221:263-267.
16. Graham DL, Beio ML, Nelson DL, Berkowitz DB (2019) Human Serine Racemase: Key
Residues/Active Site Motifs and Their Relation to Enzyme Function. Front Mol Biosci
6:8.
17. Nagasawa T, Tanizawa K, Satoda T, Yamada H (1988) Diaminopropionate Ammonia-
Lyase from Salmonella typhimurium. Purification and Characterization of the Crystalline
Enzyme, and Sequence Determination of the Pyridoxal 5′-Phosphate Binding Peptide. J
Biol Chem 263:958-964.
18. De Miranda J, Panizzutti R, Foltyn VN, Wolosker H (2002) Cofactors of Serine Racemase
that Physiologically Stimulate the Synthesis of the N-methyl-D-aspartate (NMDA)
Receptor Coagonist D-serine. Proc Natl Acad Sci U S A 99:14542-14547.
19. Cook SP, Galve-Roperh I, Martinez del Pozo A, Rodriguez-Crespo I (2002) Direct
Calcium Binding Results in Activation of Brain Serine Racemase. J Biol Chem
277:27782-27792.
20. Skarstedt MT, Greer SB (1973) Threonine Synthetase of Bacillus subtilis. The Nature of
an Associated Dehydratase Activity. J Biol Chem 248:1032-1044.
21. Petronikolou N, Ortega MA, Borisova SA, Nair SK, Metcalf WW (2019) Molecular Basis
of Bacillus subtilis ATCC 6633 Self-Resistance to the Phosphono-oligopeptide Antibiotic
Rhizocticin. ACS Chem Biol 14:742-750.
22. Covarrubias AS, Hogbom M, Bergfors T, Carroll P, Mannerstedt K, Oscarson S, Parish
T, Jones TA, Mowbray SL (2008) Structural, Biochemical, and In Vivo Investigations of
the Threonine Synthase from Mycobacterium tuberculosis. J Mol Biol 381:622-633.
23. Dekimpe S, Masschelein J (2021) Beyond Peptide Bond Formation: The Versatile Role
of Condensation Domains in Natural Product Biosynthesis. Nat Prod Rep 38:1910-1937.
24. Nelson DL, Applegate GA, Beio ML, Graham DL, Berkowitz DB (2017) Human Serine
Racemase Structure/Activity Relationship Studies Provide Mechanistic Insight and Point
to Position 84 as a Hot Spot for β-elimination Function. J Biol Chem 292:13986-14002.
25. Uda K, Nishimura R, Li Y, Shimoda E, Miyamoto T, Moe LA (2025) Evolution and
Functional Diversification of Serine Racemase Homologs in Bacteria. J Mol Evol :.
26. Raboni S, Marchetti M, Faggiano S, Campanini B, Bruno S, Marchesani F, Margiotta M,
Mozzarelli A (2018) The Energy Landscape of Human Serine Racemase. Front Mol
Biosci 5:112.
27. Yorifuji T, Ogata K (1971) Arginine Racemase of Pseudomonas graveolens. I.
Purification, Crystallization, and Properties. J Biol Chem 246:5085-5092.
28. Hasebe F, Adachi K, Maruyama C, Hamano Y (2024) Discovery of a Novel Methionine
Biosynthetic Route via O-phospho-L-homoserine. Appl Environ Microbiol 90:e0124724.
29. Omi R, Goto M, Miyahara I, Mizuguchi H, Hayashi H, Kagamiyama H, Hirotsu K (2003)
Crystal Structures of Threonine Synthase from Thermus thermophilus HB8:
Conformational Change, Substrate Recognition, and Mechanism. J Biol Chem
278:46035-46045.
30. Shoji M, Hanaoka K, Ujiie Y, Tanaka W, Kondo D, Umeda H, Kamoshida Y, Kayanuma
M, Kamiya K, Shiraishi K, Machida Y, Murakawa T, Hayashi H (2014) A QM/MM study
of the L-threonine Formation Reaction of Threonine Synthase: Implications into the
Mechanism of the Reaction Specificity. J Am Chem Soc 136:4525-4533.
31. Machida Y, Murakawa T, Sakai A, Shoji M, Shigeta Y, Hayashi H (2020) Reaction of
Threonine Synthase with the Substrate Analogue 2-amino-5-phosphonopentanoate:
Implications into the Proton Transfer at the Active Site. J Biochem 167:357-364. |