博碩士論文 112821010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.225.149.95
姓名 郭柏陞(Po-Sheng Kuo)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 硫酸還原菌與脫鹵球菌共培養系統中生物性硫化亞鐵的生成與應用
(Synergistic Formation and Application of Biogenic Iron Sulfide in a Co-culture System of Sulfate-Reducing Bacteria and Dehalococcoides mccartyi)
相關論文
★ 4-aminobiphenyl誘導HepG2細胞中的microRNAs表現 並藉由microRNAs調控DNA修復機制★ 研究Dicrotophos對HepG2細胞毒性之分子機制:CSA蛋白質在毒性扮演之角色
★ TNT經由ROS介導之內質網壓力及粒線體失衡誘導人類肝臟細胞凋亡★ Pseudomonas sp. A46全基因組分析與重金屬復育基因工程菌開發
★ 4-Aminobiphenyl 調控 miR-630 抑制 RAD18 表現誘導 Hep3B 細胞產生氧化性 DNA 損傷★ 三硝基甲苯之毒理機制及生物降解暨多氯乙烯汙染模場生物整治
★ 探討人類肝癌細胞HepG2經4-氨基聯苯處理過後miRNA-630對於同源重組修復相關蛋白MCM8的調控機制★ 假單胞菌Pseudomonas sp. A46之基因工程菌開發及重金屬之生物累積和生物吸附潛力探討
★ 開發新穎性包埋Dehalococcoides mccartyi及Clostridium butyricum之長效脫氯膠體★ 探討DNA損傷反應與慢性暴露4-胺基聯苯產生之肝臟毒性
★ 以Lpp-OmpA工法建構新穎性基因工程菌強化鎘生物復育能力★ 建構脫鹵球菌與固氮菌共培養系統促進氮源缺乏環境下的還原脫氯作用
★ 硒代胱氨酸通過誘導人肝細胞癌中的 DNA 損傷和抑制 DNA 修復途徑來增強順鉑敏感性★ 轉錄體分析 Acetobacterium woodii 降解1,1,1-三氯乙烷機制並用以協助 Dehalococcoides進行還原脫氯
★ 以宏觀基因體分析新穎 Candidatus Dehalobacterium strain DLY 降解二氯甲烷機制★ 研究雙特松對HepG2細胞之DNA修復的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 多氯乙烯(Chlorinated ethenes, CEs)在台灣本土污染場址佔據數量之冠,尤其於富含硫酸鹽的地下水中,嚴重阻礙了整治進程。由硫酸還原菌產生的硫化氫(H2S)會影響 Dehalococcoides 的脫氯反應效率,使含氯有機物降解不完全,進而導致生物復育失敗。為了探究硫酸還原和脫氯之間的相互作用,本研究旨在利用亞鐵化合物來克服硫化氫的毒性,從而生成硫化亞鐵(FeS)。由於其高還原潛能, FeS 被廣泛應用於化學整治領域。首先,透過添加氯化亞鐵(FeCl2),能夠有效移除硫酸還原菌產生的硫化氫,進而促進對多氯乙烯的完全降解。其次,藉由添加與硫酸鹽濃度相等比例的 FeCl2 ,有效將硫化氫移除至僅剩 3.1% 並促進生物性 FeS 的形成。相比過量濃度 FeCl2 的添加, FeS 的晶體顆粒大小有效降低多達 10 倍,減緩了對現地整治中造成的堵塞問題。透過轉錄體分析證實,添加 FeCl2 不僅有效地消除了硫化氫的抑制作用,增強了有機鹵素呼吸相關酵素的活性,甚至上調了參與電子傳遞的關鍵基因表現,從而提高了脫氯效率和硫酸還原菌的活性。最後,利用臺灣本土原生脫氯菌群應證於硫酸鹽及 CEs 共存環境下,脫鹵球菌的增長趨勢與 FeS 的形成呈現正相關。由多樣性分析進一步證實了 FeS 的生成有助於恢復菌群結構,甚至增加了菌群的多樣性。本研究彰顯了在硫酸鹽和多氯乙烯共存環境下共培養系統對於生成生物性硫化亞鐵的潛力,同時移除了硫酸還原產物硫化氫對脫氯反應的抑制,並結合化學及生物整治工法以提升多氯乙烯的降解效率。
摘要(英) Chlorinated ethenes (CEs) constitute a predominant contaminant in Taiwan′s native polluted sites, particularly in groundwater inundated with sulfate salts that substantially impede remediation efforts. Hydrogen sulfide (H2S) produced by sulfate-reducing bacteria (SRB) impairs the dechlorination efficiency of Dehalococcoides, resulting in incomplete chloride degradation and thereby leading to the failure of bioremediation. In order to elucidate interactions between sulfate reduction and dechlorination, this study aims to utilize ferrous compounds to overcome H2S toxicity by synthesizing ferrous sulfide (FeS), which is commonly utilized in chemical remediation due to its high reduction potential. Initially, the addition of ferrous chloride (FeCl2) effectively removed H2S production from SRB and enhanced the degradation of trichloroethylene to ethene. Optimal efficiency in biogenic FeS generation was achieved by adding FeCl2 in equal ratio to sulfate concentration. This approach effectively reduced H2S and crystal particle sizes by up to 10 times compared to excessive FeCl2 dosages, mitigating clogging issues during in situ remediation. Transcriptomic analysis revealed that the addition of FeCl2 eliminated hydrogen sulfide inhibition, enhanced dehalogenase activity, and upregulated key electron transport genes, increasing dechlorination efficiency and sulfate-reducing bacteria activity. Finally, utilizing Taiwan′s indigenous dechlorinating consortium CW5 in a simulated sulfate and CEs co-contaminated environment, the growth trend of Dehalococcoides showed a positive correlation with the FeS formation. Biodiversity analysis confirmed that FeS formation facilitated microbial community structure restoration and increased diversity. This study validates the potential of the co-culture system in generating biogenic FeS under sulfate and CEs co-contamination, removing sulfate-reducing products and improving CEs remediation through integrated chemical and biological remediations.
關鍵字(中) ★ 多氯乙烯
★ 硫化氫抑制
★ Dehalococcoides
★ 生物性硫化亞鐵
★ 硫酸還原菌
關鍵字(英) ★ Chlorinated ethenes
★ Sulfide inhibition
★ Dehalococcoides
★ Biogenic iron sulfide
★ Sulfate-reducing bacteria
論文目次 國立中央大學圖書館學位論文授權書 I
國家圖書館學位論文延後公開申請書 II
論文指導教授推薦書 III
論文口試委員審定書 IV
摘要 V
Abstract VI
致謝 VII
目錄 VIII
圖目錄 XI
表目錄 XV
第壹章 緒論(Introduction) 1
1.1 三氯乙烯之污染 1
1.2 三氯乙烯污染場址整治 ⸻ 微生物整治 2
1.3 硫酸鹽及三氯乙烯之共同污染 4
1.3.1 硫化氫之生成抑制脫氯反應 4
1.3.2 硫化亞鐵於非生物整治之應用 4
1.4 生地化整治工法 ⸻ 結合微生物及非生物整治之優勢 5
第貳章 實驗目的及架構 7
第參章 實驗材料及方法(Materials and Methods) 9
3.1 菌株來源、繼代培養與保存 9
3.1.1 菌種及來源 9
3.1.2 Hungate絕對厭氧技術 9
3.1.3 繼代培養及短期保存 10
3.1.4 菌種長期保存 12
3.2 氣相層析火焰離子化偵檢器(Gas Chromatography - Flame Ionization Detector, GC-FID) 12
3.3 含氯有機物降解速率計算分析(Dechlorination kinetic: plot fitting and calculations) 13
3.4 細菌 Genomic DNA 萃取 14
3.5 全基因組定序(Whole genome sequencing) 15
3.6 親緣關係樹狀圖分析(phylogenetic analysis) 17
3.7 即時聚合酶連鎖反應(Real-time polymerase chain reaction, qPCR) 17
3.8 硫酸鹽濃度測定 18
3.9 硫化氫濃度測定 19
3.10 鐵離子濃度測定 20
3.11 硫化亞鐵形成之測定方法 21
3.12 高解析掃描式電子顯微鏡(Scanning Electron Microscope , SEM)及能量散射X射線譜(Energy-dispersive X-ray spectroscopy, EDS) 22
3.12.1 硫化亞鐵之固定 22
3.12.2 硫化亞鐵之結構與組成 23
3.13 細菌 RNA 萃取 24
3.14 轉錄組分析(Transcriptomics Analysis) 25
3.15 Full-length 16S rRNA基因擴增子分析(Full-length 16S rRNA gene amplicon analysis) 26
第肆章 實驗結果(Results) 29
4.1 以亞鐵化合物移除硫化氫對脫鹵球菌造成之毒性 29
4.2 不同濃度亞鐵化合物移除硫化氫之效率及 FeS 生成 30
4.3 以轉錄體分析硫酸還原菌及脫鹵球菌間之相互影響 32
4.4 臺灣本土地下水中菌群組成對FeS生成及硫化氫去除的影響 34
第伍章 討論(Discussion) 35
5.1 探討脫鹵球菌及硫酸還原菌共培養相互影響之關係 35
5.2 探討FeS生成的類型及環境影響因素 36
5.3 以基因表現差異比較FeS生成之優劣 38
5.3.1 解析 D. mccartyi CWV2 及 N. liaohensis KPS 間的相互影響 38
5.3.2 探究FeS生成對電子傳遞的促進作用及相關基因表達上升 41
5.4 共污染環境下原生菌群之菌相組成改變 42
第陸章 結論(Conclusion) 44
參考文獻(References) 45
圖表 60
附加資料(Supplementary File) 89
參考文獻 Adrian, L., & Löffler, F. E. (Eds.). (2016). Organohalide-respiring bacteria (Vol. 85). Berlin: Springer.
Aeppli, M., Kaegi, R., Kretzschmar, R., Voegelin, A., Hofstetter, T. B., & Sander, M. (2019). Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environmental science & technology, 53(7), 3568-3578.
Akbari, Z., Dijojin, R. T., Zamani, Z., Hosseini, R. H., & Arjmand, M. (2021). Aromatic amino acids play a harmonizing role in prostate cancer: A metabolomics-based cross-sectional study. International Journal of Reproductive BioMedicine, 19(8), 741.
Amorim Franco, T. M., & Blanchard, J. S. (2017). Bacterial branched-chain amino acid biosynthesis: structures, mechanisms, and drugability. Biochemistry, 56(44), 5849-5865.
Aoyagi, T., Kashiwabara, Y., Kurasawa, H., Amachi, S., Nakajima, N., Hori, T., & Yamamura, S. (2019). Draft genome sequence of a novel lactate-fermenting bacterial strain of the family sporomusaceae within the class negativicutes. Microbiology Resource Announcements, 8(10), 10-1128.
Aulenta, F., Beccari, M., Majone, M., Papini, M. P., & Tandoi, V. (2008). Competition for H2 between sulfate reduction and dechlorination in butyrate-fed anaerobic cultures. Process Biochemistry, 43(2), 161-168.
Aulenta, F., Pera, A., Rossetti, S., Papini, M. P., & Majone, M. (2007). Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Research, 41(1), 27-38.
Balabanova, L., Averianova, L., Marchenok, M., Son, O., & Tekutyeva, L. (2021). Microbial and genetic resources for cobalamin (vitamin B12) biosynthesis: From ecosystems to industrial biotechnology. International journal of molecular sciences, 22(9), 4522.
Berns-Herrboldt, E. C., You, X., Lin, J., Sanford, R. A., Valocchi, A. J., Strathmann, T. J., ... & Werth, C. J. (2022). Sulfate-Reducing Bacteria Enhance Abiotic Trichloroethene Reduction by Iron–Sulfur Mineral Precipitates. ACS ES&T Water, 2(9), 1500-1510.
Börsig, N., Scheinost, A. C., Shaw, S., Schild, D., & Neumann, T. (2018). Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron (II) hydroxide and green rust. Dalton Transactions, 47(32), 11002-11015.
Brumovský, M., Filip, J., Malina, O., Oborná, J., Sracek, O., Reichenauer, T. G., Andrýsková, P., & Zbořil, R. (2020). Core-Shell Fe/FeS Nanoparticles with Controlled Shell Thickness for Enhanced Trichloroethylene Removal. ACS applied materials & interfaces, 12(31), 35424–35434.
Cai, Q., Shi, C., Cao, Z., Li, Z., Zhao, H. P., & Yuan, S. (2024). Electrokinetic bioremediation of trichloroethylene and Cr/As co-contaminated soils with elevated sulfate. Journal of Hazardous Materials, 133761.
Carpenter, J., Bi, Y., & Hayes, K. F. (2015). Influence of iron sulfides on abiotic oxidation of UO2 by nitrite and dissolved oxygen in natural sediments. Environmental science & technology, 49(2), 1078–1085.
Chen, C., Xu, G., & He, J. (2023). Substrate-dependent strategies to mitigate sulfate inhibition on microbial reductive dechlorination of polychlorinated biphenyls. Chemosphere, 342, 140063.
Chen, Y. C., & Chang, J. E. (2022). Removal of chlorine-contaminated groundwater by two-stage ozonation and biostimulation methods. Journal of Environmental Management, 317, 115417.
Chioccioli, S., Del Duca, S., Vassallo, A., Castronovo, L. M., & Fani, R. (2020). Exploring the role of the histidine biosynthetic hisF gene in cellular metabolism and in the evolution of (ancestral) genes: from LUCA to the extant (micro) organisms. Microbiological Research, 240, 126555.
Chiu, W. A., Caldwell, J. C., Keshava, N., & Scott, C. S. (2006). Key scientific issues in the health risk assessment of trichloroethylene. Environmental health perspectives, 114(9), 1445-1449.
Chowdhury, P., & Viraraghavan, T. (2009). Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes - a review. The Science of the total environment, 407(8), 2474–2492.
Christ, J. A., Lemke, L. D., & Abriola, L. M. (2009). The influence of dimensionality on simulations of mass recovery from nonuniform dense non-aqueous phase liquid (DNAPL) source zones. Advances in water resources, 32(3), 401-412.
Cord-Ruwisch, R. (1985). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. Journal of Microbiological Methods, 4(1), 33-36.
Dai, Z., Zhu, Y., Dong, H., Zhao, C., Zhang, Y., & Li, Y. (2021). Enforcing ATP hydrolysis enhanced anaerobic glycolysis and promoted solvent production in Clostridium acetobutylicum. Microbial Cell Factories, 20, 1-11.
Deng, X., Dohmae, N., Kaksonen, A. H., & Okamoto, A. (2020). Biogenic iron sulfide nanoparticles to enable extracellular electron uptake in sulfate‐reducing bacteria. Angewandte Chemie, 132(15), 6051-6055.
Deutsch, W. J., & Siegel, R. (2020). Groundwater geochemistry: fundamentals and applications to contamination. CRC press.
Dezfulian, M. H., Foreman, C., Jalili, E., Pal, M., Dhaliwal, R. K., Roberto, D. K. A., ... & Crosby, W. L. (2017). Acetolactate synthase regulatory subunits play divergent and overlapping roles in branched-chain amino acid synthesis and Arabidopsis development. BMC plant biology, 17, 1-13.
Dubinsky, A. J., Wilks, R. P., & Buhay, W. M. (2020). Confirming the source of high-sulfate concentrations in Dead Horse Creek, Winkler, Manitoba, Canada, using a dual-isotope Bayesian probability mixing model. Water, Air, & Soil Pollution, 231, 1-14.
Dutta, N., Thomsen, K., & Ahring, B. K. (2022). Degrading chlorinated aliphatics by reductive dechlorination of groundwater samples from the Santa Susana Field Laboratory. Chemosphere, 298, 134115.
Duverger, A., Berg, J. S., Busigny, V., Guyot, F., Bernard, S., & Miot, J. (2020). Mechanisms of pyrite formation promoted by sulfate-reducing bacteria in pure culture. Frontiers in Earth Science, 8, 588310.
Ednacot, E. M. Q., & Morehouse, B. R. (2024). An OLD protein teaches us new tricks: prokaryotic antiviral defense. nature communications, 15(1), 2527.
El Houari, A., Ranchou-Peyruse, M., Ranchou-Peyruse, A., Dakdaki, A., Guignard, M., Idouhammou, L., ... & Qatibi, A. I. (2017). Desulfobulbus oligotrophicus sp. nov., a sulfate-reducing and propionate-oxidizing bacterium isolated from a municipal anaerobic sewage sludge digester. International journal of systematic and evolutionary microbiology, 67(2), 275-281.
Fan, M. Y., Zhang, Y. L., Lin, Y. C., Li, J., Cheng, H., An, N., ... & Fu, P. (2020). Roles of sulfur oxidation pathways in the variability in stable sulfur isotopic composition of sulfate aerosols at an urban site in Beijing, China. Environmental Science & Technology Letters, 7(12), 883-888.
Figueiredo, M. C., Lobo, S. A., Carita, J. N., Nobre, L. S., & Saraiva, L. M. (2012). Bacterioferritin protects the anaerobe Desulfovibrio vulgaris Hildenborough against oxygen. Anaerobe, 18(4), 454-458.
Fontecave, M., & Ollagnier-de-Choudens, S. (2008). Iron–sulfur cluster biosynthesis in bacteria: mechanisms of cluster assembly and transfer. Archives of biochemistry and biophysics, 474(2), 226-237.
Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I., & Glover, L. A. (2005). Bacterial diversity promotes community stability and functional resilience after perturbation. Environmental microbiology, 7(3), 301-313.
Gittel, A., Mußmann, M., Sass, H., Cypionka, H., & Könneke, M. (2008). Identity and abundance of active sulfate‐reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD‐FISH analysis. Environmental microbiology, 10(10), 2645-2658.
Gong, Y., Tang, J., & Zhao, D. (2016). Application of iron sulfide particles for groundwater and soil remediation: A review. Water research, 89, 309-320.
Gong, Y., Tang, J., & Zhao, D. (2016). Application of iron sulfide particles for groundwater and soil remediation: A review. Water research, 89, 309-320.
Guha, N., Loomis, D., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Baan, R., Mattock, H., Straif, K., & International Agency for Research on Cancer Monograph Working Group (2012). Carcinogenicity of trichloroethylene, tetrachloroethylene, some other chlorinated solvents, and their metabolites. The Lancet. Oncology, 13(12), 1192–1193.
Guidotti, T. L. (2010). Hydrogen sulfide: advances in understanding human toxicity. International journal of toxicology, 29(6), 569-581.
Gushgari-Doyle, S., Olivares, C. I., Sun, M., & Alvarez-Cohen, L. (2023). Syntrophic Interactions Ameliorate Arsenic Inhibition of Solvent-Dechlorinating Dehalococcoides mccartyi. Environmental Science & Technology, 57(38), 14237-14247.
Gushgari-Doyle, S., Olivares, C. I., Sun, M., & Alvarez-Cohen, L. (2023). Syntrophic Interactions Ameliorate Arsenic Inhibition of Solvent-Dechlorinating Dehalococcoides mccartyi. Environmental science & technology, 57(38), 14237–14247.
He, J., Holmes, V. F., Lee, P. K., & Alvarez-Cohen, L. (2007). Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Applied and environmental microbiology, 73(9), 2847-2853.
He, Y. T., Wilson, J. T., Su, C., & Wilkin, R. T. (2015). Review of abiotic degradation of chlorinated solvents by reactive iron minerals in aquifers. Groundwater Monitoring & Remediation, 35(3), 57-75.
Heimann, A. C., Friis, A. K., & Jakobsen, R. (2005). Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply. Water research, 39(15), 3579-3586.
Hidalgo-Ulloa, A., Buisman, C., & Weijma, J. (2022). Metal sulfide precipitation mediated by an elemental sulfur-reducing thermoacidophilic microbial culture from a full-scale anaerobic reactor. Hydrometallurgy, 213, 105950.
Hoelen, T. P., & Reinhard, M. (2004). Complete biological dehalogenation of chlorinated ethylenes in sulfate containing groundwater. Biodegradation, 15(6), 395-403.
Honetschlägerová, L., Martinec, M., & Škarohlíd, R. (2019). Coupling in situ chemical oxidation with bioremediation of chloroethenes: a review. Reviews in Environmental Science and Bio/Technology, 18, 699-714.
Hungate, R. E. (1944). Studies on cellulose fermentation: I. The culture and physiology of an anaerobic cellulose-digesting bacterium. Journal of bacteriology, 48(5), 499-513.
IARC. Dry cleaning, some chlorinated solvents and other industrial chemicals. (1995). IARC monographs on the evaluation of carcinogenic risks to humans, 63, 33–477
Janda, J. M., & Abbott, S. L. (2021). The changing face of the family Enterobacteriaceae (Order:“Enterobacterales”): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clinical microbiology reviews, 34(2), 10-1128.
Jeong, H. Y., Anantharaman, K., Han, Y. S., & Hayes, K. F. (2011). Abiotic reductive dechlorination of cis-dichloroethylene by Fe species formed during iron-or sulfate-reduction. Environmental science & technology, 45(12), 5186-5194.
Karamanev, D. G., Nikolov, L. N., & Mamatarkova, V. (2002). Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Minerals Engineering, 15(5), 341-346.
Kim, H. J., Li, Y., Zimmermann, M., Lee, Y., Lim, H. W., Tan, A. S. L., ... & Pethe, K. (2022). Pharmacological perturbation of thiamine metabolism sensitizes Pseudomonas aeruginosa to multiple antibacterial agents. Cell Chemical Biology, 29(8), 1317-1324.
Kim, H., Kang, S., & Sang, B. I. (2022). Metabolic cascade of complex organic wastes to medium-chain carboxylic acids: A review on the state-of-the-art multi-omics analysis for anaerobic chain elongation pathways. Bioresource Technology, 344, 126211.
Kueper, B. H., Stroo, H. F., Vogel, C. M., & Ward, C. H. (Eds.). (2014). Chlorinated solvent source zone remediation (pp. 528-530). Springer New York.
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular biology and evolution, 35(6), 1547–1549.
Kushkevych, I., Dordević, D., & Vítězová, M. (2019). Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Medicine, 14(1), 66-74.
Kushkevych, I., Dordević, D., & Vítězová, M. (2019). Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Archives of microbiology, 201, 389-397.
Lan, Y., & Butler, E. C. (2014). Monitoring the transformation of mackinawite to greigite and pyrite on polymer supports. Applied geochemistry, 50, 1-6.
Lan, Y., & Butler, E. C. (2016). Iron-sulfide-associated products formed during reductive dechlorination of carbon tetrachloride. Environmental science & technology, 50(11), 5489-5497.
Lan, Y., Madden, A. S. E., & Butler, E. C. (2016). Transformation of mackinawite to greigite by trichloroethylene and tetrachloroethylene. Environmental Science: Processes & Impacts, 18(10), 1266-1273.
Lee, H. C., Chen, S. C., Sheu, Y. T., Yao, C. L., Lo, K. H., & Kao, C. M. (2024). Bioremediation of trichloroethylene-contaminated groundwater using green carbon-releasing substrate with pH control capability. Environmental Pollution, 123768.
Lemming, G., Hauschild, M. Z., Chambon, J., Binning, P. J., Bulle, C., Margni, M., & Bjerg, P. L. (2010). Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives. Environmental science & technology, 44(23), 9163–9169.
Li, Y., Dong, H., Li, L., Tang, L., Tian, R., Li, R., ... & Zeng, G. (2021). Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes. Water Research, 192, 116850.
Li, Y., Liu, G., He, J., & Zhong, H. (2023). Activation of persulfate for groundwater remediation: from bench studies to application. Applied Sciences, 13(3), 1304.
Li, Y., Zhao, H. P., & Zhu, L. (2021). Iron sulfide enhanced the dechlorination of trichloroethene by Dehalococcoides mccartyi strain 195. Frontiers in Microbiology, 12, 665281.
Li, Z. T., Song, X., Yuan, S., & Zhao, H. P. (2024). Unveiling the inhibitory mechanisms of chromium exposure on microbial reductive dechlorination: kinetics and microbial responses. Water Research, 121328.
Li, Z., Zhang, P., Qiu, Y., Zhang, Z., Wang, X., Yu, Y., & Feng, Y. (2021). Biosynthetic FeS/BC hybrid particles enhanced the electroactive bacteria enrichment in microbial electrochemical systems. Science of the total environment, 762, 143142.
Lin, W. H., Chen, C. C., Sheu, Y. T., Tsang, D. C., Lo, K. H., & Kao, C. M. (2020). Growth inhibition of sulfate-reducing bacteria for trichloroethylene dechlorination enhancement. Environmental Research, 187, 109629.
Liu, M. H., Hsiao, C. M., Lin, C. E., & Leu, J. (2021). Application of combined in situ chemical reduction and enhanced bioremediation to accelerate TCE treatment in groundwater. Applied Sciences, 11(18), 8374.
Liu, P., Pommerenke, B., & Conrad, R. (2018). Identification of Syntrophobacteraceae as major acetate‐degrading sulfate reducing bacteria in Italian paddy soil. Environmental microbiology, 20(1), 337-354.
Liu, X., Zhang, L., Shen, R., Lu, Q., Zeng, Q., Zhang, X., ... & Wang, S. (2023). Reciprocal interactions of abiotic and biotic dechlorination of chloroethenes in soil. Environmental Science & Technology, 57(37), 14036-14045.
Liu, Y., Balkwill, D. L., Aldrich, H. C., Drake, G. R., & Boone, D. R. (1999). Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. International Journal of Systematic and Evolutionary Microbiology, 49(2), 545-556.
Löffler, F. E., Yan, J., Ritalahti, K. M., Adrian, L., Edwards, E. A., Konstantinidis, K. T., ... & Spormann, A. M. (2013). Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. International journal of systematic and evolutionary microbiology, 63(Pt_2), 625-635.
Mao, X., Oremland, R. S., Liu, T., Gushgari, S., Landers, A. A., Baesman, S. M., & Alvarez-Cohen, L. (2017). Acetylene fuels TCE reductive dechlorination by defined Dehalococcoides/Pelobacter consortia. Environmental science & technology, 51(4), 2366-2372.
Mao, X., Polasko, A., & Alvarez-Cohen, L. (2017). Effects of sulfate reduction on trichloroethene dechlorination by Dehalococcoides-containing microbial communities. Applied and environmental microbiology, 83(8), e03384-16.
Mao, X., Polasko, A., & Alvarez-Cohen, L. (2017). Effects of sulfate reduction on trichloroethene dechlorination by Dehalococcoides-containing microbial communities. Applied and environmental microbiology, 83(8), e03384-16.
Men, Y., Feil, H., VerBerkmoes, N. C., Shah, M. B., Johnson, D. R., Lee, P. K., ... & Alvarez-Cohen, L. (2012). Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses. The ISME journal, 6(2), 410-421.
Miles, Z. D., Myers, W. K., Kincannon, W. M., Britt, R. D., & Bandarian, V. (2015). Biochemical and spectroscopic studies of epoxyqueuosine reductase: a novel iron–sulfur cluster-and cobalamin-containing protein involved in the biosynthesis of queuosine. Biochemistry, 54(31), 4927-4935.
Mingchai, C., Sakunphun, S., Palas, S., & Samposree, S. (2019). Hydrogen Sulfide Removal by Iron Oxide-Based Clay from Biogas for Community Use. Applied Mechanics and Materials, 886, 159-165.
Minton, N. P., & Clarke, D. J. (Eds.). (2013). Clostridia (Vol. 3). Springer Science & Business Media.
Myhr, S., & Torsvik, T. (2000). Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. International journal of systematic and evolutionary microbiology, 50(4), 1611-1619.
Nelson, D. K., Hozalski, R. M., Clapp, L. W., Semmens, M. J., & Novak, P. J. (2002). Effect of nitrate and sulfate on dechlorination by a mixed hydrogen-fed culture. Bioremediatio Journal, 6(3), 225-236.
Nguyen, T. M., Chen, H. H., Chang, Y. C., Ning, T. C., & Chen, K. F. (2023). Remediation of groundwater contaminated with trichloroethylene (TCE) using a long-lasting persulfate/biochar barrier. Chemosphere, 333, 138954.
Nie, Z., Wang, N., Xia, X., Xia, J., Liu, H., Zhou, Y., Deng, Y., & Xue, Z. (2020). Biogenic FeS promotes dechlorination and thus de-cytotoxity of trichloroethylene. Bioprocess and biosystems engineering, 43(10), 1791–1800.
Ohtsu, I., Kawano, Y., Suzuki, M., Morigasaki, S., Saiki, K., Yamazaki, S., ... & Takagi, H. (2015). Uptake of L-cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli. PloS one, 10(4), e0120619.
Panagiotakis, I., Mamais, D., Pantazidou, M., Rossetti, S., Aulenta, F., & Tandoi, V. (2014). Predominance of Dehalococcoides in the presence of different sulfate concentrations. Water, Air, & Soil Pollution, 225, 1-14.
Pantazidou, M., Panagiotakis, I., Mamais, D., & Zikidi, V. (2012). Chloroethene biotransformation in the presence of different sulfate concentrations. Groundwater Monitoring & Remediation, 32(1), 106-119.
Paul, L., & Smolders, E. (2014). Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene. Chemosphere, 111, 471-477.
Piper, P. W., Ortiz-Calderon, C., Holyoak, C., Coote, P., & Cole, M. (1997). Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell stress & chaperones, 2(1), 12–24.
Plugge, C. M., & Zoetendal, E. G. (2014). The family victivallaceae. In The prokaryotes: Other major lineages of bacteria and the archaea (pp. 1019-1021). Springer.
Porowski, A., Porowska, D., & Halas, S. (2019). Identification of sulfate sources and biogeochemical processes in an aquifer affected by Peatland: Insights from monitoring the isotopic composition of groundwater sulfate in Kampinos National Park, Poland. Water, 11(7), 1388.
Puentes Jácome, L. A., Wang, P. H., Molenda, O., Li, Y. X., Islam, M. A., & Edwards, E. A. (2019). Sustained dechlorination of vinyl chloride to ethene in Dehalococcoides-enriched cultures grown without addition of exogenous vitamins and at low pH. Environmental Science & Technology, 53(19), 11364-11374.
Rapala-Kozik, M. (2011). Vitamin B1 (thiamine): a cofactor for enzymes involved in the main metabolic pathways and an environmental stress protectant. In Advances in botanical research (Vol. 58, pp. 37-91). Academic Press.
Ritalahti, K. M., Amos, B. K., Sung, Y., Wu, Q., Koenigsberg, S. S., & Löffler, F. E. (2006). Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and environmental microbiology, 72(4), 2765-2774.
Rosnow, J. J., Hwang, S., Killinger, B. J., Kim, Y. M., Moore, R. J., Lindemann, S. R., ... & Wright, A. T. (2018). A cobalamin activity-based probe enables microbial cell growth and finds new cobalamin-protein interactions across domains. Applied and Environmental Microbiology, 84(18), e00955-18.
Ross, D. E., Marshall, C. W., Gulliver, D., May, H. D., & Norman, R. S. (2020). Defining genomic and predicted metabolic features of the Acetobacterium genus. Msystems, 5(5), 10-1128.
Sanden, S. A., , Szilagyi, R. K., , Li, Y., , Kitadai, N., , Webb, S. M., , Yano, T., , Nakamura, R., , Hara, M., , & McGlynn, S. E., (2021). Electrochemically induced metal- vs. ligand-based redox changes in mackinawite: identification of a Fe3+- and polysulfide-containing intermediate. Dalton transactions (Cambridge, England : 2003), 50(34), 11763–11774.
Schwentner, A., Feith, A., Münch, E., Stiefelmaier, J., Lauer, I., Favilli, L., ... & Blombach, B. (2019). Modular systems metabolic engineering enables balancing of relevant pathways for l-histidine production with Corynebacterium glutamicum. Biotechnology for biofuels, 12, 1-21.
Schwille, F., & Pankow, J. F. (1988). Dense chlorinated solvents in porous and fractured media-model experiments.
Sharma, M. K., & Kumar, M. (2020). Sulphate contamination in groundwater and its remediation: an overview. Environmental monitoring and assessment, 192, 1-10.
Shimizu, K., & Matsuoka, Y. (2022). Feedback regulation and coordination of the main metabolism for bacterial growth and metabolic engineering for amino acid fermentation. Biotechnology Advances, 55, 107887.
Song, Q., Kong, F., Liu, B. F., Song, X., & Ren, H. Y. (2024). Biochar-based composites for removing chlorinated organic pollutants: Applications, mechanisms, and perspectives. Environmental Science and Ecotechnology, 100420.
Sperandeo, P., Martorana, A. M., & Polissi, A. (2019). Lipopolysaccharide biosynthesis and transport to the outer membrane of Gram-negative bacteria. Bacterial cell walls and membranes, 9-37.
Spring, S., Rohde, M., Bunk, B., Spröer, C., Will, S. E., & Neumann‐Schaal, M. (2022). New insights into the energy metabolism and taxonomy of Deferribacteres revealed by the characterization of a new isolate from a hypersaline microbial mat. Environmental Microbiology, 24(5), 2543-2575.
Sun, L., Toyonaga, M., Ohashi, A., Tourlousse, D. M., Matsuura, N., Meng, X. Y., ... & Sekiguchi, Y. (2016). Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov. International journal of systematic and evolutionary microbiology, 66(7), 2635-2642.
Suzuki, T., Nakamura, A., Kato, K., Söll, D., Tanaka, I., Sheppard, K., & Yao, M. (2015). Structure of the Pseudomonas aeruginosa transamidosome reveals unique aspects of bacterial tRNA-dependent asparagine biosynthesis. Proceedings of the National Academy of Sciences, 112(2), 382-387.
Thiel, J., Byrne, J. M., Kappler, A., Schink, B., & Pester, M. (2019). Pyrite formation from FeS and H2S is mediated through microbial redox activity. Proceedings of the National Academy of Sciences, 116(14), 6897-6902.
Thomas, F., Hehemann, J. H., Rebuffet, E., Czjzek, M., & Michel, G. (2011). Environmental and gut bacteroidetes: the food connection. Frontiers in microbiology, 2, 93.
Tollerson, R., & Ibba, M. (2020). Translational regulation of environmental adaptation in bacteria. Journal of Biological Chemistry, 295(30), 10434-10445.
Troshina, O., Oshurkova, V., Suzina, N., Machulin, A., Ariskina, E., Vinokurova, N., ... & Shcherbakova, V. (2015). Sphaerochaeta associata sp. nov., a spherical spirochaete isolated from cultures of Methanosarcina mazei JL01. International Journal of Systematic and Evolutionary Microbiology, 65(Pt_12), 4315-4322.
Türkowsky, D., Jehmlich, N., Diekert, G., Adrian, L., von Bergen, M., & Goris, T. (2018). An integrative overview of genomic, transcriptomic and proteomic analyses in organohalide respiration research. FEMS microbiology ecology, 94(3), fiy013.
Villemur, R., Lanthier, M., Beaudet, R., & Lépine, F. (2006). The desulfitobacterium genus. FEMS microbiology reviews, 30(5), 706-733.
Wan, Y. Y., Luo, N., Liu, X. L., Lai, Q. L., & Goodfellow, M. (2021). Cupidesulfovibrio liaohensis gen. nov., sp. nov., a novel sulphate-reducing bacterium isolated from an oil reservoir and reclassification of Desulfovibrio oxamicus and Desulfovibrio termitidis as Cupidesulfovibrio oxamicus comb. nov. and Cupidesulfovibrio termitidis comb. nov. International Journal of Systematic and Evolutionary Microbiology, 71(2), 004618.
Wang, L., & Lowary, T. L. (2021). Synthesis of structurally-defined polymeric glycosylated phosphoprenols as potential lipopolysaccharide biosynthetic probes. Chemical Science, 12(36), 12192-12200.
Wang, X., Xin, J., Yuan, M., & Zhao, F. (2020). Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: a review. Water Research, 183, 116060.
Ward, B. (2015). Bacterial energy metabolism. In Molecular medical microbiology (pp. 201-233). Academic Press.
Ward, L. M., Bertran, E., & Johnston, D. T. (2021). Expanded genomic sampling refines current understanding of the distribution and evolution of sulfur metabolisms in the Desulfobulbales. Frontiers in Microbiology, 12, 666052.
Wu, Z., Man, Q., Niu, H., Lyu, H., Song, H., Li, R., ... & Ma, X. (2022). Recent advances and trends of trichloroethylene biodegradation: A critical review. Frontiers in Microbiology, 13, 1053169.
Xi, Y., Lan, S., Li, X., Wu, Y., Yuan, X., Zhang, C., ... & Wu, S. (2020). Bioremediation of antimony from wastewater by sulfate-reducing bacteria: Effect of the coexisting ferrous ion. International Biodeterioration & Biodegradation, 148, 104912.
Yan, J., Wang, J., Villalobos Solis, M. I., Jin, H., Chourey, K., Li, X., Yang, Y., Yin, Y., Hettich, R. L., & Löffler, F. E. (2021). Respiratory Vinyl Chloride Reductive Dechlorination to Ethene in TceA-Expressing Dehalococcoides mccartyi. Environmental science & technology, 55(8), 4831–4841.
Yang, Y., & McCarty, P. L. (1998). Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environmental Science & Technology, 32(22), 3591-3597.
Yoshikawa, M., Zhang, M., Kawabe, Y., & Katayama, T. (2021). Effects of ferrous iron supplementation on reductive dechlorination of tetrachloroethene and on methanogenic microbial community. FEMS Microbiology Ecology, 97(5), fiab069.
Yutin, N., & Galperin, M. Y. (2013). A genomic update on clostridial phylogeny: G ram‐negative spore formers and other misplaced clostridia. Environmental microbiology, 15(10), 2631-2641.
Zaa, C. L. Y., McLean, J. E., Dupont, R. R., Norton, J. M., & Sorensen, D. L. (2010). Dechlorinating and iron reducing bacteria distribution in a TCE‐contaminated aquifer. Groundwater Monitoring & Remediation, 30(1), 46-57.
Zhang, J., Song, L., Wang, Y., Liu, C., Zhang, L., Zhu, S., ... & Duan, L. (2019). Beneficial effect of butyrate‐producing Lachnospiraceae on stress‐induced visceral hypersensitivity in rats. Journal of gastroenterology and hepatology, 34(8), 1368-1376.
Zhang, S., Cui, J., Zhang, M., Liu, J., Wang, L., Zhao, J., & Bao, Z. (2021). Diversity of active anaerobic ammonium oxidation (ANAMMOX) and nirK-type denitrifying bacteria in macrophyte roots in a eutrophic wetland. Journal of Soils and Sediments, 21, 2465-2473.
Zheng, C., & Dos Santos, P. C. (2018). Metallocluster transactions: dynamic protein interactions guide the biosynthesis of Fe–S clusters in bacteria. Biochemical Society Transactions, 46(6), 1593-1603.
Zhou, C., Vannela, R., Hayes, K. F., & Rittmann, B. E. (2014). Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris. Journal of Hazardous Materials, 272, 28-35.
Zhou, L., Liu, J., & Dong, F. (2017). Spectroscopic study on biological mackinawite (FeS) synthesized by ferric reducing bacteria (FRB) and sulfate reducing bacteria (SRB): Implications for in-situ remediation of acid mine drainage. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 173, 544-548.
Zhu, F., Huang, Y., Ni, H., Tang, J., Zhu, Q., Long, Z. E., & Zou, L. (2022). Biogenic iron sulfide functioning as electron-mediating interface to accelerate dissimilatory ferrihydrite reduction by Shewanella oneidensis MR-1. Chemosphere, 288, 132661.
Zhu, F., Peng, X., Hu, X., & Kong, L. (2022). H2S release rate strongly affects particle size and settling performance of metal sulfides in acidic wastewater: The role of homogeneous and heterogeneous nucleation. Journal of Hazardous Materials, 438, 129484.
Zou, C., Guo, B., Zhuang, X., Ren, L., Ni, S. Q., Ahmad, S., ... & Hong, J. (2020). Achieving fast start-up of anammox process by promoting the growth of anammox bacteria with FeS addition. npj Clean Water, 3(1), 41.
水利署. (2024). 各用水量統計資料庫. 取自 http://www.wra.gov.tw
行政院環保署. (2024). 土壤及地下水污染整治網. 取自 https://sgw.moenv.gov.tw
指導教授 陳師慶(Ssu-Ching Chen) 審核日期 2024-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明